Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Automatic, cost-effective, and reliable detection of neurodegenerative diseases (NDs) is one of the important issues in clinical practice. The main idea of the proposed method in this study is to utilize the advantages of gait time series that can provide low-cost and noninvasive measures, homomorphic filtering that can effectively separate muscle activity from body dynamic and recurrent neural network or cascade forward neural network that can learn sequential time-varying data. Experimental results on gait time series of 16 healthy control subjects, 13 patients with amyotrophic lateral sclerosis, 15 patients with Parkinson’s disease and 20 patients with Huntington’s disease have demonstrated high detection performance with an accuracy rate of 100 % using K-fold cross validation for all three types of NDs outperforming other existing methods. The results have also indicated that the use of real cepstral coefficients, oscillation components, or basic statistics feature set has improved the detection performance.
Wydawca
Czasopismo
Rocznik
Tom
Strony
476--493
Opis fizyczny
Bibliogr. 80 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
autor
- Computational Neuroscience Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
Bibliografia
- [1] Ghaderyan P, Beyrami SMG. Neurodegenerative diseases detection using distance metrics and sparse coding: a new perspective on gait symmetric features. Comput Biol Med 2020 103736.
- [2] Cha S-H. Comprehensive survey on distance/similarity measures between probability density functions. City 2007;1:1.
- [3] Hrelia P, Sita G, Ziche M, Ristori E, Marino A, Cordaro M, et al. Common protective strategies in neurodegenerative disease: focusing on risk factors to target the cellular redox system. Oxid Med Cell Longev 2020;2020.
- [4] Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals 2018;11:44.
- [5] Allain H, Bentué-Ferrer D, Akwa Y. Disease-modifying drugs and Parkinson’s disease. Prog Neurobiol 2008;84:25-39.
- [6] De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, et al. Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun Rev 2016;15:1005-11.
- [7] Iram S, Fergus P, Al-Jumeily D, Hussain A, Randles M. A classifier fusion strategy to improve the early detection of neurodegenerative diseases. Int J Artif Intell Soft Comput 2015;5:23-44.
- [8] Golbe LI, Mark MH, Sage JI. Parkinson’s disease handbook. America: The American Parkinson Disease Association Inc.; 2010.
- [9] Moon Y, Sung J, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: a systematic review and meta-analysis. Hum Mov Sci 2016;47:197-208.
- [10] Parker JN, Parker PM. Huntington Disease-A Bibliography and Dictionary for Physicians, Patients, and Genome. ICON Group International Researchers; 2007.
- [11] Lindsay KW, Bone I. Section IV - Localised neurological disease and its management A. Intracranial. In: Lindsay KW, Bone I, Fuller G, editors. INTRACRANIALNeurology and Neurosurgery Illustrated. Churchill Livingstone; 2010. p. 217-388.
- [12] Sugavaneswaran L, Umapathy K, Krishnan S. Ambiguity domain-based identification of altered gait pattern in ALS disorder. J Neural Eng 2012;9 046004.
- [13] Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: an update for 2018. Elsevier Mayo Clinic Proc 2018:1617-28.
- [14] Ghaderyan P, Fathi G. Inter-limb time-varying singular value: a new gait feature for Parkinson’s disease detection and stage classification. Measurement 2021;109249.
- [15] Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2019;187:209-25.
- [16] Blijham PJ, Schelhaas HJ, ter Laak HJ, van Engelen BG, Zwarts MJ. Early diagnosis of ALS: the search for signs of denervation in clinically normal muscles. J Neurol Sci 2007;263:154-7.
- [17] Saljuqi M, Ghaderyan P. A novel method based on matching pursuit decomposition of gait signals for Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease detection. Neurosci Lett 2021;761 136107.
- [18] Viteckova S, Kutilek P, Svoboda Z, Krupicka R, Kauler J, Szabo Z. Gait symmetry measures: a review of current and prospective methods. Biomed Signal Process Control 2018;42:89-100.
- [19] Ye Q, Xia Y, Yao Z. Classification of gait patterns in patients with neurodegenerative disease using adaptive neuro-fuzzy inference system. Comput Math Methods Med 2018;2018:9831252.
- [20] Prabhu P, Pradhan N. Recurrence quantification analysis of human gait in neurological movement disorders. Int J Eng Res 2016:5.
- [21] Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol 2000.
- [22] Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: stride-tostride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord 1998;13:428-37.
- [23] Dutta S, Ghosh D, Samanta S. Non linear approach to study the dynamics of neurodegenerative diseases by Multifractal Detrended Cross-correlation Analysis-A quantitative assessment on gait disease. Physica A 2016;448:181-95.
- [24] Zheng H, Yang M, Wang H, McClean S. Machine learning and statistical approaches to support the discrimination of neuro-degenerative diseases based on gait analysis. Intelligent patient management: Springer; 2009. p. 57-70.
- [25] Beyrami SMG, Ghaderyan P. A robust, cost-effective and noninvasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis. Measurement 2020;156 107579.
- [26] Zeng W, Wang C. Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Inf Sci 2015;317:246-58.
- [27] Daliri MR. Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Measurement 2012;45:1729-34.
- [28] Xia Y, Gao Q, Ye Q. Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models. Biomed Signal Process Control 2015;18:254-62.
- [29] Das KD, Saji A, Kumar CS. Frequency analysis of gait signals for detection of neurodegenerative diseases. In: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE; 2017. p. 1-6.
- [30] Baratin E, Sugavaneswaran L, Umapathy K, Ioana C, Krishnan S. Wavelet-based characterization of gait signal for neurological abnormalities. Gait Posture 2015;41:634-9.
- [31] Merrikh-Bayat F. Time series analysis of parkinson’s disease, huntington’s disease and amyotrophic lateral sclerosis. Procedia Comput Sci 2011;3:210-5.
- [32] Ren P, Tang S, Fang F, Luo L, Xu L, Bringas-Vega ML, et al. Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition. IEEE Trans Biomed Eng 2016;64:52-60.
- [33] Ren P, Zhao W, Zhao Z, Bringas-Vega ML, Valdes-Sosa PA, Kendrick KM. Analysis of gait rhythm fluctuations for neurodegenerative diseases by phase synchronization and conditional entropy. IEEE Trans Neural Syst Rehabil Eng 2015;24:291-9.
- [34] Aziz W, Arif M. Complexity analysis of stride interval time series by threshold dependent symbolic entropy. Eur J Appl Physiol 2006;98:30-40.
- [35] Dutta S, Ghosh D, Chatterjee S. Multifractal detrended cross correlation analysis of neuro-degenerative diseases-An in depth study. Physica A 2018;491:188-98.
- [36] Pham TD. Texture classification and visualization of time series of gait dynamics in patients with neuro-degenerative diseases. IEEE Trans Neural Syst Rehabil Eng 2018;26:188-96.
- [37] Prabhu P, Karunakar A, Anitha H, Pradhan N. Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis. Pattern Recogn Lett 2018.
- [38] Elden RH, Ghoneim VF, Al-Atabany W. A computer aided diagnosis system for the early detection of neurodegenerative diseases using linear and non-linear analysis. In: 2018 IEEE 4th Middle East Conference on Biomedical Engineering (MECBME): IEEE. p. 116-21.
- [39] Saljuqi M, Ghaderyan P. Detection of neurodegenerative diseases using time-frequency symmetric features of gait signal. Iranian J Biomed Eng 2021;15:41-50.
- [40] Ghaderyan P, Abbasi A. Sparse coding classification and cepstral singular value for cognitive workload estimation. Comput Electr Eng 2021;91 107031.
- [41] Benesty J, Sondhi MM, Huang Y. Springer handbook of speech processing. Springer 2007.
- [42] Li M, Narayanan S. Robust ECG biometrics by fusing temporal and cepstral information. In: Pattern recognition (icpr), 2010 20th international conference on: IEEE. p. 1326-9.
- [43] Ghaderyan P, Abbasi A. An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations. Int J Psychophysiol 2016;110:91-101.
- [44] Vanrell SR, Milone DH, Rufiner HL. Assessment of homomorphic analysis for human activity recognition from acceleration signals. IEEE J Biomed Health Inform 2017;22:1001-10.
- [45] Ghaderyan P, Abbasi A. A novel cepstral-based technique for automatic cognitive load estimation. Biomed Signal Process Control 2018;39:396-404.
- [46] Li M, Rozgić V, Thatte G, Lee S, Emken A, Annavaram M, et al. Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Trans Neural Syst Rehabil Eng 2010;18:369-80.
- [47] Amin S, Singhal A. Identification and classification of neurodegenerative diseases using feature selection through PCALD. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON): IEEE. p. 578-86.
- [48] Ye Q, Xia Y, Yao Z. Classification of gait patterns in patients with neurodegenerative disease using adaptive neuro-fuzzy inference system. Computational and mathematical methods in medicine. 2018;2018.
- [49] Dutta S, Chatterjee A, Munshi S. An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification. Expert Syst 2009;26:202-17.
- [50] Warsito B, Santoso R, Yasin H. Cascade forward neural network for time series prediction. J Phys: Conf Ser: IOP Publishing 2018 012097.
- [51] Übeyli ED. Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks. Digital Signal Process 2009;19:134-43.
- [52] Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol 2000;88:2045-53.
- [53] Hausdorff JM, Ladin Z, Wei JY. Footswitch system for measurement of the temporal parameters of gait. J Biomech 1995;28:347-51.
- [54] Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967;50:11-26.
- [55] If S, Fahn S, Shoulson I, Fahn S. Huntington disease: clinical care and evaluation. Neurology 1979;29:1-3.
- [56] Iram S, Fergus P, Al-Jumeily D, Hussain A, Randles M. A classifier fusion strategy to improve the early detection of neurodegenerative diseases. Int J Artif Intell Soft Comput 2015;5.
- [57] Huang X, Acero A, Hon H-W, Reddy R. Spoken language processing: A guide to theory, algorithm, and system development. Prentice hall PTR; 2001.
- [58] Kwon D-J, Im J-H, Siddiqi MR, Hur J. Detection Technique for Manufacturing Imperefection of Rare-earth Magnets on IPMSM. In: 2020 IEEE Energy Conversion Congress and Exposition (ECCE): IEEE. p. 1407-10.
- [59] Yaman O, Ertam F, Tuncer T. Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features. Med Hypotheses 2020;135 109483.
- [60] Elden RH, Al-Atabany W, Ghoneim VF. Gait Rhythm Fluctuations Assessment for Neurodegenerative Patients. In: 2018 9th Cairo International Biomedical Engineering Conference (CIBEC): IEEE; 2018. p. 9-12.
- [61] Xia Y, Gao Q, Lu Y, Ye Q. A novel approach for analysis of altered gait variability in amyotrophic lateral sclerosis. Med Biol Eng Compu 2016;54:1399-408.
- [62] Haykin S. Neural networks and learning machines. India 3/E: Pearson Education; 2010.
- [63] Anbazhagan S, Kumarappan N. A neural network approach to day-ahead deregulated electricity market prices classification. Electr Pow Syst Res 2012;86:140-50.
- [64] Toha SF, Tokhi MO. MLP and Elman recurrent neural network modelling for the TRMS. In: 2008 7th IEEE international conference on cybernetic intelligent systems: IEEE; 2008. p. 1-6.
- [65] Puchalski B, Rutkowski TA. Approximation of fractional order dynamic systems using elman, GRU and LSTM neural networks. In: International Conference on Artificial Intelligence and Soft Computing: Springer; 2020. p. 215-30.
- [66] Szkoła J, Pancerz K, Warchoł J. Recurrent neural networks in computer-based clinical decision support for laryngopathies: an experimental study. Comput Intell Neurosci 2011;2011.
- [67] Al-Askar H, Radi N, MacDermott Á. Recurrent neural networks in medical data analysis and classifications. Appl Comput Med Health: Elsevier 2016:147-65.
- [68] Zhao A, Qi L, Li J, Dong J, Yu H. A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data. Neurocomputing 2018;315:1-8.
- [69] González JJ, Méndez LD, Mañas S, Duque MR, Pereda E, De Vera L. Performance analysis of univariate and multivariate EEG measurements in the diagnosis of ADHD. Clin Neurophysiol 2013;124:1139-50.
- [70] Elman JL. Finding structure in time. Cognit Sci 1990;14:179-211.
- [71] Yang M, Zheng H, Wang H, McClean S. Feature selection and construction for the discrimination of neurodegenerative diseases based on gait analysis. In: 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare: IEEE; 2009. p. 1-7.
- [72] Hausdorff JM, Mitchell SL, Firtion R, Peng C-K, Cudkowicz ME, Wei JY, et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J Appl Physiol 1997;82:262-9.
- [73] Wu Y, Krishnan S. Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng 2009;18:150-8.
- [74] Xia Y, Ye Q, Gao Q, Lu Y, Zhang D. Symmetry analysis of gait between left and right limb using cross-fuzzy entropy. Comput Math Methods Med 2016.
- [75] Joshi D, Khajuria A, Joshi P. An automatic non-invasive method for Parkinson’s disease classification. Comput Methods Programs Biomed 2017;145:135-45.
- [76] Wu Y, Krishnan S. Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis. Med Biol Eng Comput 2009;47:1165-71.
- [77] Khorasani A, Daliri MR, Pooyan M. Recognition of amyotrophic lateral sclerosis disease using factorial hidden Markov model. Biomedizinische Technik Biomed Eng 2015:61.
- [78] Sarbaz Y, Pourhedayat A. Spectral analysis of gait disorders in Huntington’s disease: a new horizon to early diagnosis. J Mech Med Biol 2014;14.
- [79] Klomsae A, Auephanwiriyakul S, Theera-Umpon N. String grammar unsupervised possibilistic fuzzy C-Medians for gait pattern classification in patients with neurodegenerative diseases. Comput Intell Neurosci 2018;2018:1-10.
- [80] Ren P, Zhao W, Zhao Z, Bringas-Vega ML, Valdes-Sosa PA, Kendrick KM. Analysis of gait rhythm fluctuations for neurodegenerative diseases by phase synchronization and conditional entropy. IEEE Trans Neural Syst Rehabil Eng 2016;24:291-9.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74670368-b907-4099-b7a9-254d516a7f10