Identyfikatory
DOI
Warianty tytułu
The use of Monte Carlo simulations to assess the potential of gyroidal nanocarbons application as adsorbents for sulphur dioxide capture
Języki publikacji
Abstrakty
Ditlenek siarki jest zanieczyszczeniem gazowym mogącym wywierać negatywny wpływ na środowisko naturalne oraz ludzkie zdrowie. Adsorpcja jest jedną z metod, którą można wykorzystać do jego usuwania. W ramach niniejszego badania wykorzystano symulacje Monte Carlo do przewidzenia właściwości adsorpcyjnych nanoporowatych węgli gyroidalnych względem SO₂. Układy tego typu stanowią nową obiecującą klasę szeroko rozumianych nanomateriałów węglowych. Wykorzystując serię węglowych struktur modelowych o geometrii gyroidalnej, w sposób systematyczny zbadano ilościowo wpływ różnic ich struktury porowatej na wychwyt ditlenku siarki. Dokonano również porównania z adsorpcją w nieuporządkowanych porach węgli aktywnych. Potwierdzono, że kluczowym parametrem jest rozmiar porów. Nanowęgle gyroidalne o węższych porach adsorbują większą ilość SO₂ przy jego niskiej prężności, a jednocześnie cała objętość ich porów może zostać zapełniona przy niższym ciśnieniu. Zwiększenie rozmiaru porów sprawia jednak, że rośnie maksymalna liczba moli ditlenku siarki pochłaniana przez jednostkę masy adsorbentu, ale jej osiągnięcie następuje przy wyższej prężności tego gazu. Z praktycznego punktu widzenia znaczenie ma przede wszystkim adsorpcja przy jego niskich ciśnieniach. W takich warunkach nanowęgle gyroidalne, zwłaszcza te o wąskich porach, jak GNC-04, mogą być efektywnymi adsorbentami SO₂.
The subject of this publication is research carried out on two industrial oils which were used in a continuous oil system, ensuring lubrication of machine elements. In addition, the aspect of the physicochemical properties of the oil and the method of assessing its suitability for operational purposes are discussed. In the paper are presented quantitative and qualitative methods of analysis of industrial oils, according to applicable standards and method of their implementation. The research was carried out over a period of 5 months, so it was possible to determine what parameters of the oils changed during their use. This aspect was the basis for the conclusion on the evaluation of the suitability of the oil as a lubricant in the further operation of the machines. The selected oils that were analyzed differed in purpose, as one of them was a mineral turbine oil and the other a mineral compressor oil.
Czasopismo
Rocznik
Tom
Strony
10--28
Opis fizyczny
Bibliogr. 126 poz., wykr.
Twórcy
autor
- Akademia Nauk Stosowanych im. Stanisława Staszica w Pile, ul. Podchorążych 10, 64-920 Piła, Polska
autor
- Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Zespół Modelowania i Charakterystyki Nanomateriałów, ul. Gagarina 7, 87-100 Toruń, Polska
Bibliografia
- [1] Hung Y-T, Ashner I. Sulfur dioxide emission and mitigation. In: Hung Y-T, Wang LK, Shammas NK, editors. Handbook of Environment and Waste Management. Vol. 3: Acid Rain and Greenhouse Gas Pollution Control. London: World Scientific Publishing; 2020. p. 627–658. https://doi.org/10.1142/9789811207136_0018.
- [2] Kang H, Zhu B, van der A RJ, Zhu C, de Leeuw G, Hou X, Gao J. Natural and anthropogenic contributions to long-term variations of SO₂, NO₂, CO, and AOD over East China. Atmospheric Research. 2019;215:284–293. https:// doi.org/10.1016/j.atmosres.2018.09.012.
- [3] Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics. 2011;11:1101–1116. https://doi.org/10.5194/ acp-11-1101-2011.
- [4] Ren Y, Shen G, Shen H, Zhong Q, Xu H, Meng W, Zhang W, Yu X, Yun X, Luo Z, Chen Y, Li B, Cheng H, Zhu D, Tao S. Contributions of biomass burning to global and regional SO₂ emissions. Atmospheric Research. 2021;260:105709. https://doi.org/10.1016/j.atmosres.2021.105709.
- [5] Jion MMF, Jannat JN, Mia Y, Ali A, Islam S, Ibrahim SM, Pal SC, Islam A, Sarker A, Malafaia G, Bilal M, Islam ART. A critical review and prospect of NO₂ and SO₂ pollution over Asia: Hotspots, trends, and sources. Science of the Total Environment. 2023;876:162851. https://doi. org/10.1016/j.scitotenv.2023.162851.
- [6] Fatima F, Fatima N, Amjad T, Anjum A, Afzal T, Riaz J, Razzaq H. A review on acid rain: An environmental threat. Pure and Applied Biology. 2021;10:301–310. https://doi. org/10.19045/bspab.2021.100032.
- [7] Twagirayezu G, Nizeyimana JC, Irumva O, Ntakiyimana C, Uwimpaye F, Nyirandayisabye R, In: Manzi HP, Hakuzweyezu T. A critical review of acid rain: Causes, effects, and mitigation measures. In: Walag AMP, editor. Novel Perspectives of Geography, Environment and Earth Sciences Vol. 6. BP International; 2023. p. 23–40. https:// doi.org/10.9734/bpi/npgees/v6/5127A.
- [8] Abbasi T, Poornima P, Kannadasan T, Abbasi SA. Acid rain: Past, present, and future. International Journal of Environmental Engineering. 2013;5:229–272. https://doi. org/10.1504/IJEE.2013.054703.
- [9] Grennfelt P, Engleryd A, Forsius M, Hov Ø, Rodhe H, Cowling E. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio. 2020;49:849864. https://doi.org/10.1007/s13280-019-01244-4.
- [10] Liu Z, Yang J, Zhang J, Xiang H, Wei H. A bibliometric analysis of research on acid rain. Sustainability. 2019;11:3077. https://doi.org/10.3390/su11113077.
- [11] Orellano P, Reynoso J, Quaranta N. Short-term exposure to sulphur dioxide (SO₂) and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment International. 2021;150:106434. https://doi. org/10.1016/j.envint.2021.106434.
- [12] Khajeamiri Y, Sharifi S, Moradpour N, Khajeamiri A. A review on the effect of air pollution and exposure to PM, NO₂, O₃, SO₂, CO and heavy metals on viral respiratory infections. Journal of Air Pollution and Health. 2020;5:243258. https://doi.org/10.18502/japh.v5i4.6445.
- [13] Khalaf EM, Mohammadi MJ, Sulistiyani S, Ramírez-Coronel AA, Kiani F, Jalil AT, Almulla AF, Asban P, Farhadi M, Derikondi M. Effects of sulfur dioxide inhalation on human health: A review. Reviews on Environmental Health. 2022;22:331–337. https://doi.org/10.1515/reveh-2022-0237. [14] Chen Z, Liu N, Tang H, Gao X, Zhang Y, Kan H, Deng F, Zhao B, Zeng X, Sun Y, Qian H, Liu W, Mo J, Zheng X, Huang C, Sun C, Zhao Z. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air. 2022;32:e13170. https://doi. org/10.1111/ina.13170.
- [15] Huang J, Zheng W, Huang H, Ran Y, Liu Y, Huang P. Particulate matter, nitrogen dioxide, and sulfur dioxide and their associations with allergic skin diseases: A systematic review and meta-analysis. Atmospheric Pollution Research. 2023;14:101804. https://doi.org/10.1016/j. apr.2023.101804.
- [16] Fazakas E, Neamtiu IA, Gurzau ES. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) – a review of the literature. Reviews on Environmental Health. 2023;39:459–478. https://doi.org/10.1515/reveh-2022-0252.
- [17] Liu W, Cai M, Long Z, Tong X, Li Y, Wang L, Zhou M, Wei J, Lin H, Yin P. Association between ambient sulfur dioxide pollution and asthma mortality: Evidence from a nationwide analysis in China. Ecotoxicology and Environmental Safety. 2023;249:114442. https://doi.org/10.1016/j. ecoenv.2022.114442.
- [18] Chen R, Zhang T, Guo Y, Wang J, Wei J, Yu Q. Recent advances in simultaneous removal of SO₂ and NOx from exhaust gases: Removal process, mechanism and kinetics. Chemical Engineering Journal. 2021;420:127588. https:// doi.org/10.1016/j.cej.2020.127588.
- [19] Pasichnyk M, Stanovsky P, Polezhaev P, Zach B, Šyc M, Bobák M, Jansen JC, Přibyl M, Bara JE, Friess K, Havlica J, Gin DL, Noble RD, Izák P. Membrane technology for challenging separations: Removal of CO₂, SO₂ and NOx from flue and waste gases. Separation and Purification Technology. 2023;323:124436. https://doi.org/10.1016/j. seppur.2023.124436.
- [20] Kumar L, Jana SK. Advances in absorbents and techniques used in wet and dry FGD: A critical review. Reviews in Chemical Engineering. 2022;38:843–880. https:// doi.org/10.1515/revce-2020-0029.
- [21] Chandran K, Kait CF, Wilfred CD, Zaid HFM. A review on deep eutectic solvents: Physiochemical properties and its application as an absorbent for sulfur dioxide. Journal of Molecular Liquids. 2021;338:117021. https:// doi.org/10.1016/j.molliq.2021.117021.
- [22] Hanif MA, Ibrahim N, Jalil AA. Sulfur dioxide removal: An overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration. Environmental Science and Pollution Research. 2020;27:27515–27540. https://doi.org/10.1007/ s11356-020-09191-4.
- [23] Zhao M, Xue P, Liu J, Liao J, Guo J. A review of removing SO₂ and NOX by wet scrubbing. Sustainable Energy Technologies and Assessments. 2021;47:101451. https:// doi.org/10.1016/j.seta.2021.101451.
- [24] Islam A, Teo SH, Ng CH, Taufiq-Yap YH, Choong SYT, Awual R. Progress in recent sustainable materials for greenhouse gas (NOx and SOx ) emission mitigation. Progress in Materials Science. 2023;132:101033. https://doi. org/10.1016/j.pmatsci.2022.101033.
- [25] Yu H, Shan C, Li J, Hou X, Yang L. Alkaline absorbents for SO₂ and SO₃ removal: A comprehensive review. Journal of Environmental Management. 2024;366:121532. https:// doi.org/10.1016/j.jenvman.2024.121532.
- [26] Silas K, Ghani WAWAK, Choong TSY, Rashid U. Carbonaceous materials modified catalysts for simultaneous SO₂/NOx removal from flue gas: A review. Catalysis Reviews. 2018;61:134–161. https://doi.org/10.1080/016149 40.2018.1482641.
- [27] Sepehrian M, Anbia M, Hedayatzadeh MH, Yazdi F. SO₂ dry-based catalytic removal from flue gas leading to elemental sulfur production: A comprehensive review. Process Safety and Environmental Protection. 2024;182:456–480. https://doi.org/10.1016/j. psep.2023.11.077.
- [28] Hou Y, Chen Y, He X, Wang F, Cai Q, Shen B. Insights into the adsorption of CO₂, SO₂ and NOx in flue gas by carbon materials: A critical review. Chemical Engineering Journal. 2024;490:151424. https://doi.org/10.1016/j. cej.2024.151424.
- [29] Wang H, Yuan B, Hao R, Zhao Y, Wang X. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas. Chemical Engineering Journal. 2019;378:122155. https://doi.org/10.1016/j. cej.2019.122155.
- [30] Kong D, Lian L, Wang Y, Hussain A, Liu Y. A review on carbon-based and coordination polymer-based materials for adsorption of SO₂ from flue gas. Chemical Engineering Journal. 2024;500:157089. https://doi.org/10.1016/j. cej.2024.157089.
- [31] Xie J, Wang D, Liu L, Shao T, Zhou H, Zhang D. An overview of flue gas SO₂ capture technology based on absorbent evaluation and process intensification. Industrial & Engineering Chemistry Research. 2024;63:6066–6086. https://doi.org/10.1021/acs.iecr.4c00405.
- [32] Zewdie DT, Bizualem YD, Nurie AG. A review on removal CO₂, SO₂, and H₂S from flue gases using zeolite based adsorbents. Discover Applied Sciences. 2024;6:331. https:// doi.org/10.1007/s42452-024-05989-w.
- [33] Wen W, Wen C, Wang D, Zhu G, Yu J, Ling P, Xu M, Liu T. A review on activated coke for removing flue gas pollutants (SO₂, NOx , Hg0, and VOCs): Preparation, activation, modification, and engineering applications. Journal of Environmental Chemical Engineering. 2024;12:111964. https://doi.org/10.1016/j.jece.2024.111964.
- [34] Bamdad H, Hawboldt K, MacQuarrie S. A review on common adsorbents for acid gases removal: Focus on biochar. Renewable and Sustainable Energy Reviews. 2018;81:17051720. https://doi.org/10.1016/j.rser.2017.05.261.
- [35] Aimikhe VJ , Eyankware OE. Adsorbents for noxious gas sequestration: State of the art. Journal of Scientific Research & Reports. 2019;25:1–21. https://doi.org/10.9734/ JSRR/2019/v25i1-230176.
- [36] Ge JC, Yoon SK, Choi NJ. Application of fly ash as an adsorbent for removal of air and water pollutants. Applied Sciences. 2018;8:1116. https://doi.org/10.3390/app8071116.
- [37] Hasan HF, Al-Sudani FT, Albayati TM, Salih IK, Hharah HN, Majdi HS, Saady NMC, Zendehboudi S, Amari A, Gheni SA. Solid adsorbent material: A review on trends of post-combustion CO2 capture. Process Safety and Environmental Protection. 2024;182:975–988. https://doi. org/10.1016/j.psep.2023.12.025.
- [38] Gupta NK, López-Olvera A, González-Zamora E, Martínez-Ahumada E, Ibarra IA. Sulfur dioxide capture in metal-organic frameworks, metal-organic cages, and porous organic cages. ChemPlusChem. 2022;87:e202200006. https://doi.org/10.1002/cplu.202200006.
- [39] Zafari R, Mendonça FG, Baker RT, Fauteux-Lefebvre C. Efficient SO₂ capture using an amine-functionalized, nanocrystalline cellulose-based adsorbent. Separation and Purification Technology. 2023;308:122917. https:// doi.org/10.1016/j.seppur.2022.122917.
- [40] Nie Y, Dai J, Hou Y, Zhu Y, Wang C, He D, Mei Y. An efficient and environmentally friendly process for the reduction of SO₂ by using waste phosphate mine tailings as adsorbent. Journal of Hazardous Materials. 2020;388:121748. https://doi.org/10.1016/j.jhazmat.2019.121748.
- [41] Yang Y, Hao X, Sun Z, Chen Y, Xu Z, Zhao W. Fabrication of metal oxides-based adsorbents for SO₂ capture with equimolar adsorption. Chemical Engineering Journal. 2024;486:150106. https://doi.org/10.1016/j.cej.2024.150106.
- [42] Guerrero-Sánchez J, Munoz-Pizza DM, Takeuchi N. Silicene as an efficient way to fully inactivate the SO₂ pollutant. Applied Surface Science. 2019;479:847–851. https:// doi.org/10.1016/j.apsusc.2019.02.078.
- [43] Tong S, Zhu J, Wang Z, Yan J. Highly selective SO₂ capture by triazine-functionalized triphenylamine-based nanoporous organic polymers. ACS Applied Materials & Interfaces. 2024;16:42717–42725. https://doi.org/10.1021/ acsami.4c08905.
- [44] Yu L, He M, Yao J, Xia Q, Yang S, Li J, Wang H. A robust aluminum-octacarboxylate framework with scu topology for selective capture of sulfur dioxide. Chemical Science. 2024;15:8530–8535. https://doi.org/10.1039/D4SC01877J.
- [45] Ma Y, Li A, Wang C. Experimental study on adsorption removal of SO₂ in flue gas by defective UiO-66. Chemical Engineering Journal. 2023;455:140687. https://doi. org/10.1016/j.cej.2022.140687.
- [46] Awad AM, Jalab R, Benamor A, Nasser MS, Ba-Abbad MM, El-Naas M, Mohammad AW. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. Journal of Molecular Liquids. 2020;301:112335. https:// doi.org/10.1016/j.molliq.2019.112335.
- [47] Jamshed A, Iqbal A, Ali S, Ali S, Mamoon M. A quick review on the applications of nanomaterials as adsorbents. MOJ Ecology & Environmental Sciences. 2023;8:86–89. https://doi.org/10.15406/mojes.2023.08.00278.
- [48] Qin H, Liu Y, Liu H, Di S, Zhu S. Application and research progress of nanomaterials as adsorbents in environment field. In: Tharini J, Thomas S, editors. Carbon Nanomaterials and their Composites as Adsorbents. Cham: Springer; 2024. p. 105–134. https://doi.org/10.1007/978-3-031-48719-4_7.
- [49] Liu X, Li Y, Chen Z, Yang H, Cai Y, Wang S, Chen J, Hu B, Huang Q, Shen C, Wang X. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. Critical Reviews in Environmental Science and Technology. 2023;53:1289–1309. https://doi.org/10.1080/10643389.2023.2168473.
- [50] Balakumar S, Mahesh N, Kamaraj M, Saranya T, Babu PS, Aravind J, Kim W, Govarthanan M. Customized carbon composite nanomaterials for the mitigation of emerging contaminants: A review of recent trends. Carbon Letters. 2024;34:1091–1114. https://doi.org/10.1007/ s42823-024-00715-3.
- [51] Bansal RC, Goyal M. Adsorpcja na węglu aktywnym. Warszawa: Wydawnictwo Naukowe PWN; 2009.
- [52] Alengebawy A, Deka TJ, Ban S, Chen Z, Osman AI, Yap P-S, Ai P. Carbonaceous sorbents for hydrogen purification. In: Rahimpour MR, Makarem MA, Kiani P, editors. Hydrogen Purification and Separation. Boca Raton: CRC Press; 2024. https://doi.org/10.1201/9781003382522-15.
- [53] Serafin J, Dziejarski B. Activated carbons – preparation, characterization and their application in CO2 capture: A review. Environmental Science and Pollution Research. 2024;31:40008–40062. https://doi.org/10.1007/ s11356-023-28023-9.
- [54] Sharma G, Sharma S, Kumar A, Lai CW, Naushad M, Iqbal SJ, Stadler FJ. Activated carbon as superadsorbent and sustainable material for diverse applications. Adsorption Science & Technology. 2022;2022:1. https://doi. org/10.1155/2022/4184809.
- [55] Reza S, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Taweekun J, Azad AK. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab Journal of Basic and Applied Sciences. 2020;27:208–238. https://doi.org/10.1080/ 25765299.2020.1766799.
- [56] Shi L, Zhu Z, Wu N, Chang Y, Yue L, An L. Adsorption characteristics of SO₂ onto novel activated carbon fixed bed: Kinetics, isotherms, thermodynamics and washing regeneration. Environmental Technology. 2023;45:51825203. https://doi.org/10.1080/09593330.2023.2283810.
- [57] Abdulrasheed AA, Jalil AA, Triwahyono S, Zaini MAA, Gambo Y, Ibrahim M. Surface modification of activated carbon for adsorption of SO₂ and NOX : A review of existing and emerging technologies. Renewable and Sustainable Energy Reviews. 2018;94:1067–1085. https://doi. org/10.1016/j.rser.2018.07.011.
- [58] Sheng H, Zhao X, Wang S, He T, Zhang J, He S, Huang Y. Nitrogen-doped high-surface-area activated carbon: Innovative adsorbent for enhanced SO₂ and benzene removal. Journal of Industrial and Engineering Chemistry. 2024;144:463–475. https://doi.org/10.1016/j. jiec.2024.09.041.
- [59] Wang T, Tian S, Li G, Zhang L, Sheng M, Ren W. Molecular simulation of gas adsorption in shale nanopores: A critical review. Renewable and Sustainable Energy Reviews. 2021;149:111391. https://doi.org/10.1016/j. rser.2021.111391.
- [60] Datar A, Witman M, Lin L-C. Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights. AIChE Journal. 2021;67:e17447. https://doi. org/10.1002/aic.17447.
- [61] Salahshoori I, Wang Q, Nobre MAL, Mohammadi AH, Dawi EA, Khonakdar HA. Molecular simulation-based insights into dye pollutant adsorption: A perspective review. Advances in Colloid and Interface Science. 2024;333:103281. https://doi.org/10.1016/j. cis.2024.103281.
- [62] Obliger A, Bousige C, Coasne B, Leyssale J-M. Development of atomistic kerogen models and their applications for gas adsorption and diffusion: A mini-review. Energy & Fuels. 2023;37:1678–1698. https://doi.org/10.1021/acs. energyfuels.2c03633.
- [63] Li J, Wang Y, Chen Z, Rahman SS. Simulation of adsorption-desorption behavior in coal seam gas reservoirs at the molecular level: A comprehensive review. Energy & Fuels. 2020;34:2619–2642. https://doi.org/10.1021/acs. energyfuels.9b02815.
- [64] Tylianakis E, Froudakis GE. Grand canonical Monte Carlo method for gas adsorption and separation. Journal of Computational and Theoretical Nanoscience. 2009;6:335348. https://doi.org/10.1166/jctn.2009.1040.
- [65] Steele W. Computer simulations of physical adsorption: A historical review. Applied Surface Science. 2002;196:312. https://doi.org/10.1016/S0169-4332(02)00038-7.
- [66] Binder K. Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics. 1997;60:487559. https://doi.org/10.1088/0034-4885/60/5/001.
- [67] Furmaniak S, Terzyk AP, Gauden PA, Kowalczyk P, Szymański GS. Influence of activated carbon surface oxygen functionalities on SO₂ physisorption – Simulation and experiment. Chemical Physics Letters. 2013;578:85–91. https://doi.org/10.1016/j.cplett.2013.05.060.
- [68] Peng X, Jain SK, Singh JK. Adsorption and separation of N2 /CH₄/CO2 /SO₂ gases in disordered carbons obtained using hybrid reverse Monte Carlo simulations. Journal of Physical Chemistry C. 2017;121:13457–13473. https:// doi.org/10.1021/acs.jpcc.7b01925.
- [69] Zhao R, Liu G, Wei G, Gao J, Lu H. Analysis of SO₂ physisorption by edge-functionalized nanoporous carbons using grand canonical Monte Carlo methods and density functional theory: implications for SO₂ removal. ACS Omega. 2021;6:33735–33746. https://doi.org/10.1021/ acsomega.1c05000.
- [70] Maurya M, Singh JK. A grand canonical Monte Carlo study of SO₂ capture using functionalized bilayer graphene nanoribbons. Journal of Chemical Physics. 2017;146:044704. https://doi.org/10.1063/1.4974309.
- [71] Rahimi M, Babu DJ, Singh JK, Yang Y-B, Schneider JJ, Müller-Plathe F. Double-walled carbon nanotube array for CO2 and SO₂ adsorption. Journal of Chemical Physics. 2015;143:124701. https://doi.org/10.1063/1.4929609.
- [72] Yang Y-B, Rahimi M, Singh JK, Böhm MC, Müller-Plathe F. Adsorption and condensation of SO₂ in double-walled carbon nanotube arrays studied by Monte Carlo simulations and simple analytical models. Journal of Physical Chemistry C. 2016;120:7510–7521. https://doi.org/10.1021/ acs.jpcc.5b08910.
- [73] Nickmand Z, Aghamiri SF, Khozanie MRT, Sabzyan H. A Monte Carlo simulation of the adsorption of CO2 and SO₂ gases in pure and functionalized single walled carbon nanotubes. Separation Science and Technology. 2014;49:499–505. https://doi.org/10.1080/01496395.2013 .862277.
- [74] Rahimi M, Singh JK, Müller-Plathe F. Adsorption and separation of binary and ternary mixtures of SO₂, CO2 and N2 by ordered carbon nanotube arrays: Grand-canonical Monte Carlo simulations. Physical Chemistry Chemical Physics. 2016;18:4112–4120. https://doi.org/10.1039/ c5cp06377a.
- [75] Yang Y-B, Hao Q, Müller-Plathe F, Böhm MC. Monte Carlo Simulations of SO₂, H2 S, and CO2 adsorption in charged single-walled carbon nanotube arrays. Journal of Physical Chemistry C. 2020;124:5838–5852. https://doi. org/10.1021/acs.jpcc.9b10424.
- [76] Chen S-Y, Hui Y, Yang Y-B. Monte Carlo simulations of adsorption and separation of binary mixtures of CO2 , SO₂, and H2 S by charged single-walled carbon nanotubes. Soft Materials. 2020;18:262–273. https://doi.org/10.1080/15394 45X.2020.1729806.
- [77] Sun W, Lin L-C, Peng X, Smit B. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO₂ and NOx from flue gases. AIChE Journal. 2014;60:2314–2323. https://doi.org/10.1002/aic.14467.
- [78] Vellamarthodika S, Gautam S. SO₂ adsorption in ZSM22: Role of orientational disorder in the adsorbent. AIP Conference Procedings. 2024;2995:020028. https://doi. org/10.1063/5.0178213.
- [79] Chen E, Jia L, Jia X, Wei Q, Zhang L. Understanding the adsorption and separation of sulfur dioxide in flue gas by zeolitic imidazolate frameworks via molecular simulation. Chemical Physics Letters. 2021;778:138788. https:// doi.org/10.1016/j.cplett.2021.138788.
- [80] Vellamarthodika S, Gautam S. Role of orientational disorder in ZSM-22 in the adsorption of SO₂. Molecular Physics. 2022;120:e2117663. https://doi.org/10.1080/00268976.20 22.2117663.
- [81] Song X-D, Wang S, Hao C, Qiu J-S. Investigation of SO₂ gas adsorption in metal-organic frameworks by molecular simulation. Inorganic Chemistry Communications. 2014;46:277–281. https://doi.org/10.1016/j. inoche.2014.06.003.
- [82] Livas CG, Raptis D, Tylianakis E, Froudakis GE. Multiscale theoretical study of sulfur dioxide (SO₂) adsorption in metal-organic frameworks. Molecules. 2023;28:3122. https://doi.org/10.3390/molecules28073122.
- [83] Wang H, Bai JQ, Yin Y, Wang SF. Experimental and numerical study of SO₂ removal from a CO2 /SO₂ gas mixture in a Cu-BTC metal organic framework. Journal of Molecular Graphics and Modelling. 2020;96:107533. https://doi. org/10.1016/j.jmgm.2020.107533.
- [84] Grubišić S, Dahmani R, Djordjević I, Sentić M, Hochlaf M. Selective adsorption of sulphur dioxide and hydrogen sulphide by metal-organic frameworks. Physical Chemistry Chemical Physics. 2023;25:954–965. https:// doi.org/10.1039/d2cp04295a.
- [85] Devaraj M, Pai SDKR, Badawi M, Pillai RS. Molecular simulation prediction on SO₂ gas adsorption in bipyridine ligand-based square-pillared MOFs. ACS Applied Nano Materials. 2024;7:16630–16638. https://doi.org/10.1021/ acsanm.4c02680.
- [86] Schoen AH. Reflections concerning triply-periodic minimal surfaces. Interface Focus. 2012;2:658–668. https://doi. org/10.1098/rsfs.2012.0023.
- [87] Werner JG, Hoheisel TN, Wiesner U. Synthesis and characterization of gyroidal mesoporous carbons and carbon monoliths with tunable ultralarge pore size. ACS Nano. 2014;8:731–743. https://doi.org/10.1021/nn405392t.
- [88] Werner JG, Johnson SS, Vijay V, Wiesner U. Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium-sulfur batteries. Chemistry of Materials. 2015;27:3349–3357. https:// doi.org/10.1021/acs.chemmater.5b00500.
- [89] Werner JG, Scherer MRJ, Steiner U, Wiesner U. Gyroidal mesoporous multifunctional nanocomposites via atomic layer deposition. Nanoscale. 2014;6:8736–8742. https:// doi.org/10.1039/c4nr01948b.
- [90] Werner JG, Rodríguez-Calero GG, Abruña HD, Wiesner U. Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy & Environmental Science. 2018;11:1261–1270. https://doi.org/10.1039/C7EE03571C.
- [91] Chu W-C, Bastakoti BP, Kaneti YV, Li J-G, Alamri HR, Alothman ZA, Yamauchi Y, Kuo S-W. Tailored design of bicontinuous gyroid mesoporous carbon and nitrogen-doped carbon from poly(ethylene oxide-b-caprolactone) diblock copolymers. Chemistry: A European Journal. 2017;23:13734–13741. https://doi.org/10.1002/chem.201702360.
- [92] Krüner B, Dörr TS, Shim H, Sann J, Janek J, Presser V. Gyroidal porous carbon activated with NH₃ or CO2 as lithium-sulfur battery cathodes. Batteries & Supercaps. 2018;1:83–94. https://doi.org/10.1002/batt.201800013.
- [93] Qin Z, Jung GS, Martin-Martinez FJ, Buehler MJ. Multiscale Modeling and applications of bioinspired materials with gyroid structures. In: Shankar S, Muller R, Dunning T, Chen GH, editors. Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Cham: Springer; 2021. p. 629–644. https:// doi.org/10.1007/978-3-030-18778-1_27.
- [94] Garcia AE, Wang CS, Sanderson RN, McDevitt KM, Zhang Y, Valdevit L, Mumm DR, Mohraz A, Ragan R. Scalable synthesis of gyroid-inspired freestanding three-dimensional graphene architectures. Nanoscale Advances. 2019;1:3870–3882. https://doi.org/10.1039/C9NA00358D.
- [95] Nicolaï A, Monti J, Daniels C, Meunier V. Electrolyte diffusion in gyroidal nanoporous carbon. Journal of Physical Chemistry C. 2015;119:2896–2903. https://doi.org/10.1021/ jp511919d.
- [96] Qin Z, Jung GS, Kang MJ, Buehler MJ. The mechanics and design of a lightweight three-dimensional graphene assembly. Science Advances. 2017;3:e1601536. https://doi. org/10.1126/sciadv.1601536.
- [97] Kowalczyk P, Furmaniak S, Neimark AV, Burian A, Terzyk AP. Surface-constrained Metropolis Monte Carlo: Simulation of reactions on triply periodic minimal surfaces. Journal of Physical Chemistry A. 2024;128:1725–1735. https://doi.org/10.1021/acs.jpca.3c08203.
- [98] Furmaniak S. New virtual porous carbons based on carbon EDIP potential and Monte Carlo simulations. Computational Methods in Science and Technology. 2013;19:4757. https://doi.org/10.12921/cmst.2013.19.01.47-57.
- [99] Furmaniak S, Gauden PA, Terzyk AP, Kowalczyk P. Gyroidal nanoporous carbons – Adsorption and separation properties explored using computer simulations. Condensed Matter Physics. 2016;19:13003. https://doi. org/10.5488/CMP.19.13003.
- [100] Humphrey W, Dalke A, Schulten K. VMD – Visual molecular dynamics. Journal of Molecular Graphics. 1996;14:3338. https://doi.org/10.1016/0263-7855(96)00018-5.
- [101] Bhattacharya S, Gubbins KE. Fast method for computing pore size distributions of model materials. Langmuir. 2006;22:7726–7731. https://doi.org/10.1021/la052651k.
- [102] P.I. Ravikovitch, A. Vishnyakov, A.V. Neimark, Density functional theory and molecular simulations of adsorption and phase transitions in nanopores, Physical Review E. 2001;64:011602. https://doi.org/10.1103/ PhysRevE.64.011602.
- [103] Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 2015;87:1051–1069. https:// doi.org/10.1515/pac-2014-1117.
- [104] Lowell S, Shields JE, Thomas MA, Thommes M, editors. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. New York: Springer; 2004
- [105] Sing K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids and Surfaces A. 2001;187–188:3–9. https://doi.org/10.1016/ S0927-7757(01)00612-4.
- [106] Yan Q, de Pablo JJ. Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. Journal of Chemical Physics. 1999;111:9509–9516. https://doi.org/10.1063/1.480282.
- [107] NIST Standard Reference Database Number 69. In: NIST Chemistry WebBook. National Institute of Standards and Technology, US Department of Commerce; 2023. https:// doi.org/10.18434/T4D303.
- [108] Ribeiro MCC. Molecular dynamics simulation of liquid sulfur dioxide. Journal of Physical Chemistry B. 2006;110:8789–8797. https://doi.org/10.1021/jp060518a.
- [109] Steele WA. The Interaction of Gases with Solid Surfaces. Oxfrod: Pergamon Pess; 1974.
- [110] Lau KF, Alper HE, Thacher TS, Stouch TR. Effects of switching functions on the behavior of liquid water in molecular dynamics simulations. Journal of Physical Chemistry. 1994;98:8785–8792. https://doi.org/10.1021/ j100086a032.
- [111] Fennel CJ, Gezelter JD. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. Journal of Chemical Physics. 2006;124:234104. https://doi.org/10.1063/1.2206581.
- [112] Do DD, Do HD. Effects of potential models in the vapor–liquid equilibria and adsorption of simple gases on graphitized thermal carbon black. Fluid Phase Equilibria. 2005;236:169–177. https://doi.org/10.1016/j. fluid.2005.06.012.
- [113] Do DD, Do HD. Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. Journal of Physical Chemistry B. 2006;110:17531–17538. https://doi. org/10.1021/jp062386r.
- [114] Do DD. Adsorption Analysis: Equilibria and Kinetics. London: Imperial College Press; 1998.
- [115] Jorge M, Schumacher C, Seaton NA. Simulation study of the effect of the chemical heterogeneity of activated carbon on water adsorption. Langmuir. 2002;18:9296–9306. https://doi.org/10.1021/la025846q.
- [116] Furmaniak S. Modelowanie adsorpcji chloroformu wewnątrz nanorurek węglowych. Cz. 1. LAB Laboratoria, Aparatura, Badania. 2014;5:15–18.
- [117] Kruk M, Jaroniec M, Gadkaree KP. Determination of the specific surface area and the pore size of microporous carbons from adsorption potential distributions. Langmuir. 1999;15:1442–1448. https://doi.org/10.1021/la980789f.
- [118] Choma J, Jaroniec M. A model-independent analysis of nitrogen adsorption isotherms on oxidized active carbons. Colloids and Surfaces A. 2001;189:103–111. https:// doi.org/10.1016/S0927-7757(01)00572-6.
- [119] Choma J, Jaroniec M. Adsorption potential distributions for silicas and organosilicas. Adsorption Science & Technology. 2007;25:573–581. https://doi. org/10.1260/0263-6174.25.8.573.
- [120] Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11:341–359. https://doi.org/10.1023/A:1008202821328.
- [121] Sips R. On the structure of a catalyst surface. Journal of Chemical Physics. 1948;16:490–495. https://doi. org/10.1063/1.1746922.
- [122] Marsh H, Rodríguez-Reinoso F. Activated Carbon. Amsterdam: Elsevier; 2006.
- [123] Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M. Methods for preparation and activation of activated carbon: A review. Environmental Chemistry Letters. 2020;18:393–415. https://doi.org/10.1007/ s10311-019-00955-0.
- [124] Soonmin H, Kabbashi NA. Review on activated carbon: synthesis, properties and applications. International Journal of Engineering Trends and Technology. 2021;69:124–139. https://doi.org/10.14445/22315381/ IJETT-V69I9P216.
- [125] Gao Y, Yue Q, Gao B, Li A. Insight into activated carbon from different kinds of chemical activating agents: A review. Science of the Total Environment. 2020;746:141094. https://doi.org/10.1016/j.scitotenv.2020.141094.
- [126] Sosa JA, Laines JR, García DS, Hernández R, Zappi M, de los Monteros AEE. Activated carbon: A review of residual precursors, synthesis processes, characterization techniques, and applications in the improvement of biogas. Environmental Engineering Research. 2023;28:220100. https://doi.org/10.4491/eer.2022.100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7466ec2b-34ec-4b76-b06f-b6895e674524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.