PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology for modeling and determining the frequency response trace of robotic composite structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Metoda modelowania i określania częstotliwości drgań kompozytowych konstrukcji robotyki
Języki publikacji
EN
Abstrakty
EN
The methodology of modeling and determining the natural frequencies of oscillations of a robotic structure made of composite material including motors, bearings, gears, and ratio changers is considered. The vibration forms of a multi-stage bench for semi-natural modeling from composite material determined using the finite element method are presented. The developed methods allow the study of complex robotic systems of homogeneous and composite materials.
PL
Rozważana jest metodologia modelowania i określania naturalnych częstotliwości drgań konstrukcji robotycznej wykonanej z materiału kompozytowego, w tym silników, łożysk, kół zębatych i zmieniaczy przełożeń. Opracowane metody pozwalają na badanie złożonych systemów robotycznych z materiałów jednorodnych i kompozytowych.
Rocznik
Strony
39--42
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Department of Instrument Engineering Technology, Institute №3 “Control Systems, Computer Science, and Electric Power”, Moscow Aviation Institute (National Research University), Volokolamskoe Highway, 4, Moscow, Russia
Bibliografia
  • [1] Jones R.M. The mechanics of composite materials. London: Taylor and Francis (2014).
  • [2] Reddy J.N. The Mechanics of Multilayer Composite Plates and Shells: Theory and Analysis, Second Edition. London: Taylor & Francis (2003).
  • [3] Grover N., Singh B.N., Maiti D.K. Analytical and finite element modeling of multilayer composite and three-layer plates: Evaluation of a new theory of shear deformation for a free vibration response. International Journal of Mechanical Sciences, 67 (2013), 89-99.
  • [4] Obraztsov I.F., Volmir A.S., Khayrnasov K.Z. Toroidal shells: delayed catastrophes at dynamic loading. Reports of the USSR Academy of Sciences, 266 (1982), No. 6, 1344-1346.
  • [5] Kamanyu P., Lambert L. Methodology for designing mechanically bonded compounds in layered composite materials. Composite Science Technology, 66 (2006), 3004- 3020.
  • [6] Roos R., Kress G., Ermanni P. A post-processing method for interlaminar normal stresses in doubly curved laminates. Composite Structures, 81 (2007), 463-470. 42 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 10/2020
  • [7] Khayrnasov K.Z. A methodology for optimizing layout schemes of multi-stage dynamic stands for semi-natural modeling. Bulletin of the Peoples' Friendship University of Russia. Series: Engineering Research, 1 (2002), 37-41.
  • [8] Khayrnasov K.Z. Methodology for calculating the stress-strain state of robotic system made of composite materials. IOP Conference Series: Materials, Science and Engineering, 675 (2019).
  • [9] Khairnasov K.Z. Mathematical modeling of shell configurations made of homogeneous and composite materials experiencing intensive short actions and large displacements. 5th International Conference on Topical Problems of Continuum Mechanics with a Special Session in Honor of Alexander Manzhirov's 60th Birthday 2–7 October 2017, Tsakhkadzor, Armenia, TPCM-2017 Journal of Physics: Conference Series (2018), 991.
  • [10] Khayrnasov K.Z. The methodology of static and dynamic analysis and optimization of layout schemes of multi-stage dynamic stands for semi-natural modeling. Proceedings of the International Scientific Conference “Architecture of shells and strength analysis of thin-walled building and engineering structures of complex form”, 1 (2001), 28-35.
  • [11] Savin S.P. The use of modern polymer composite materials in the structure of the glider of the aircraft family MS-21. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 14 (2012) No. 4, 686.
  • [12] Zienkiewicz O.C., Taylor R.L., Zhu J.Z. The finite element method: its basis and foundation. Oxford: Butterworth- Heinemann (2013).
  • [13] Moaveni S. Theory of finite element analysis and application with ANSYS. London: Pearson Education (2015).
  • [14] Kutromanos I. Applied fundamentals of finite element analysis. Linear finite element analysis. New York: John Wiley & Sons (2018).
  • [15] Bate K.J. Finite Element Procedures. New York: Pearson Education (2006).
  • [16] Hoopert I. An Advanced Analytical Approach for Calculating Ball and Roller Bearings. Journal of Tribology, 136 (2014), 11105-11116.
  • [17] Ebrat O., Mourelatos Z.P., Vlakhopoulos N., Vaidyanatan K. Calculation of the dynamic characteristics of bearing bearings, including bearing misalignment and structural deformation of the bearing. Tribology Transactions, 47 (2004), 94-102.
  • [18] Bonno D., Fatou A., Suchet D. Hydrodynamic bearings. New York: Wiley (2014).
  • [19] Mehlenhoff T., Bloedorn C. Solution for Automated Drilling in Composite Structures with a Standard Articulating Robot System. SAE International (2010).
  • [20] Sunada W., Dubowsky S. The Application of finite element methods to the dynamic analysis of flexible spatial and coplanar linkage systems. Journal of Mechanical Design, 103 (1981), 643-651.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7464883a-2fc3-4544-9c5f-cf9151b2310f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.