PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and self-assembly of a simple CO2-responsive diblock polymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methoxypolyethylene glycol 1900 and α-bromoisobutanoyl bromide were utilized for alcoholysis reaction to obtain a macromolecular initiator. Then, a simple amphiphilic diblockpolymer (mPEG-PDMAEMA) based on the initiator and dimethylaminoethyl methacrylate was synthesized through the atomic transfer radical polymerization (ATRP) method. The structures of the initiator and diblock polymer were accurately characterized using infrared spectrum and proton nuclear magnetic resonance spectroscopy (1H NMR). Cryo-transmission electron microscopy revealed the self-assembly of mPEG-PDMAEMA into vesicle-like structures in water. Upon injection of CO2 into the solution, the tertiary amine structure within PDMAEMA underwent protonation, resulting in the mPEG-PDMAEMA adopting a hydrophilic structure. Consequently, the vesicles dissociated and dispersed, forming a network-like structure in water. The protonation phenomenon was confi rmed by 1H NMR, as evidenced by the shifting of alkyl hydrogen atoms near nitrogen atoms toward downfi eld positions.
Rocznik
Strony
16--20
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
  • Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610213, People’s Republic of China
autor
  • Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610213, People’s Republic of China
  • Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Sichuan Provincial Department of Science and Technology, Chengdu, Sichuan, 610051, People’s Republic of China
autor
  • Engineering Technology Department, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610081, People’s Republic of China
autor
  • Engineering Technology Department, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610081, People’s Republic of China
autor
  • Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Chengdu, Sichuan, 610213, People’s Republic of China
Bibliografia
  • 1. Bates, C.M. & Bates, F.S. (2017). 50th Anniversary Perspective: Block Polymers Pure Potential. Macromolecules 50, 3–22 DOI: 10.1021/acs.macromol.6b02355.
  • 2. Hasannia, M., Aliabadi, A., Abnous, K., Taghdisi, S.M., Ramezani, M. & Alibolandi, M. (2022). Synthesis of Block Bopolymers Used in Polymersome Fabrication: Application in Drug Delivery. J. Control Release 341, 95–117 DOI: 10.1016/j. jconrel.2021.11.010.
  • 3. Xu, L., Zhang, X., Chu, Z., Wang, H., Li, Y., Shen, X., Cai, L., Shi, H., Zhu, C. & Pan, J. (2021). Temperature-responsive Multilayer Films Based on Block Copolymer-coated Silica Nanoparticles for Long-term Release of Favipiravir. Acs Appl. Nano. Mater. 4, 14014–14025 DOI: 10.1021/acsanm.1c03334.
  • 4. Gaucher, G., Marchessault, R.H. & Leroux, J. (2010). Polyester-based Micelles and Nanoparticles for the Parenteral Delivery Of Taxanes. J. Controll. Release 143, 2–12. DOI: 10.1016/j.jconrel.2009.11.012.
  • 5. Gong, F., Cheng, X., Wang, S., Wang, Y., Gao, Y. & Cheng, S. (2009). Biodegradable Comb-dendritic Tri-block Copolymers Consisting of Poly(ethylene Glycol) and Poly(l-lac-tide): Synthesis, Characterizations, and Regulation of Surface Morphology and Cell Responses. Polymer 50, 2775–2785. DOI: 10.1016/j.polymer.2009.04.033.
  • 6. Zhang, X., Burt, H.M., Mangold, G., Dexter, D., Von, Hoff, D., Mayer, L. & Hunter, W.L. (1997). Anti-tumor Efficacy and Biodistribution of Intravenous Polymeric Micellar Paclitaxel. Anti-Cancer Drugs 8, 696–701. DOI: 10.1097/00001813-199708000-00008.
  • 7. Gong, C., Xie, Y., Wu, Q., Wang, Y., Deng, S., Xiong, D., Liu, L., Xiang, M., Qian, Z. & Wei, Y. (2012). Improving Anti-tumor Activity with Polymeric Micelles Entrapping Paclitaxel in Pulmonary Carcinoma. Nanoscale 4, 6004–6017. DOI: 10.1039/C2NR31517C.
  • 8. Shi, M., Sun, J., Zhou, J., Yu, H., Yu, S., Xia, G., Wang, L., Teng, Y., Liu, G. & Yu, C. (2018). Phase I dose Escalation and Pharmacokinetic Study on the Nanoparticle Formulation of Polymeric Micellar Paclitaxel for Injection in Patients with Advanced Solid Malignancies. Invest. New Drugs 36, 269–277 DOI: 10.1007/s10637-017-0506-4.
  • 9. Onaca, O., Enea, R., Hughes, D.W. & Meier, W. (2009). Stimuli-responsive Polymersomes as Nanocarriers for Drug and Gene Delivery. Macromol. Biosci. 9, 129–139. DOI: 10.1002/mabi.200800248.
  • 10. Hamidi, M., Shahbazi, M.A. & Rostamizadeh, K. (2012). Copolymers: Efficient Carriers for Intelligent Nanoparticulate Drug Targeting and Gene Therapy. Macromol. Biosci. 12, 144–164. DOI: 10.1002/mabi.201100193.
  • 11. Hegyi, G., Szigeti, G.P., Szász, A. & Jia, W. (2013). Hyperthermia versus Oncothermia: Cellular Effects in Complementary Cancer Therapy. Evid-Based Compl. Alt. Med. 2013, 672873. DOI: 10.1155/2013/672873.
  • 12. Krieg, R., C., Knuechel, R., Schiffmann, E., Liotta, L.A., Petricoin, III EF. & Herrmann, P.C. (2004). Mitochondrial Proteome: Cancer-altered Metabolism Associated with Cytochrome c oxidase Subunit Level Variation. Proteomics 4, 2789–2795. DOI: 10.1002/pmic.200300796.
  • 13. Kir, S., Komaba, H., Garcia, A.P., Economopoulos, K.P., Liu, W., Lanske, B., Hodin, R.A. & Spiegelman, B.M. (2016). PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab. 23, 315–323. DOI: 10.1016/j. cmet.2015.11.003.
  • 14. Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 45, 4015–4039 DOI: 10.1021/ma3001719.
  • 15. Wang, J., M. & Matyjaszewski, K. (1995). “ Living”/controlled Radical Polymerization. Transition-metal-catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. Macromolecules 28, 7572–7573 DOI: 10.1021/ma00126a041.
  • 16. Wang, J. & Matyjaszewski, K. (1995). Controlled/”Living” Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. Macromolecules 28, 7901–7910. DOI: 10.1021/ma00127a042.
  • 17. Brito, A.L.B., Lopes, S., Ogruc, Ildiz, G. & Fausto, R. (2023). Structure, Vibrational Spectra, and Cryogenic MatrixPhotochemistry of 6-Bromopyridine-2-carbaldehyde: From the Single Molecule of the Compound to the Neat Crystalline Material. Molecules 28, 1673. DOI: 10.3390/molecules28041673.
  • 18. Dostert, K., O’Brien, CP., Liu, W., Riedel, W., Savara, A., Tkatchenko, A., Schauermann, S. & Freund, H. (2016). Adsorption of Isophorone and Trimethyl-cyclohexanone on Pd (111): A Combination of Infrared Reflection Absorption Spectroscopy and Density Functional Theory Studies. Surf. Sci. 650, 149–160. DOI: 10.1016/j.susc.2016.01.026.
  • 19. Premadasa, U.I., Adhikari, N.M. & Cimatu, K.L.A. (2019). Molecular Insights into the Role of Electronic Substituents on the Chemical Environment of the −CH3 and >C═O Groups of Neat Liquid Monomers Using Sum Frequency Generation Spectroscopy. The J. Phys. Chem. C 123, 28201–28209 DOI: 10.1021/acs.jpcc.9b07816.
  • 20. Wu, J.D., Zhang, C., Jiang, D., J., Zhao, S., F., Jiang, Y., L., Cai, G., Q. & Wang, J., P. (2016). Self-cleaning pH/thermo--responsive Cotton Fabric with Smart-control and Reusable Functions for Oil/water Separation. RSC. Adv. 6, 24076–24082. DOI: 10.1039/C6RA02252A.
  • 21. Liang, L., Dong, Y., Wang, H. & Meng, X. (2019). Smart Cotton Fabric with CO2-Responsive Wettability for Controlled Oil/Water Separation. Adv. Fiber Mater. 1, 222–230. DOI: 10.1007/s42765-019-00018-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74614cea-7435-4c88-bfe4-39a58c9cd246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.