PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural, Corrosion and Abrasive Characteristics of Titanium Matrix Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Commercially pure titanium is less expensive, generally more corrosion resistant and lower in strength than its alloys, and is not heat-treatable. The use of Ti and its alloys as construction materials under severe friction and wear conditions is limited due to their poor tribological properties. Nevertheless, proper addition of hard ceramic particles into Ti and its alloys has proved to be an efficient way to enhance their mechanical and wear properties. Our purpose in this work was to analyze the corrosion, tribocorrosion, mechanical and morphological effects of combining titanium carbide with titanium metal, to create a unique composite via spark plasma sintering technique (SPS). Composites with different mass percentage (1, 5, 10, 15 and 20 wt %) of ceramic phase were produced. The samples of pure Ti and Ti-6Al-4V alloy were also tested, as a reference. These composites were examined for mechanical properties and corrosion resistance in an environment similar to the human body (Ringer’s solution). Open circuit potential (OPC) and anodic polarization measurements were performed. The properties of titanium composites reinforced with micro- and nanocrystalline TiC powders were compared. It was stated that wear properties were significantly improved with increasing amount of TiC in matrix, especially in the case of nanocrystalline reinforcement. In terms of corrosion resistance, the composites showed slightly worse properties compared to pure titanium and Ti-6Al-4V alloy.
Twórcy
autor
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, 19 Piastów Av. 70-310 Szczecin, Poland
autor
  • Metal Forming Institute, 14 Jana Pawła II Str., 61-139 Poznań, Poland
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, 19 Piastów Av. 70-310 Szczecin, Poland
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Manufacturing Engineering, Piastów Av. 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Institute of Materials Science and Engineering, 19 Piastów Av. 70-310 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Institute of Chemical Technology and Environment Engineering, 10 Pułaskiego Av., 70-322 Szczecin, Poland
Bibliografia
  • [1] http://c.ymcdn.com/sites/www.titanium.org/resource/resmgr/Docs/TiUltimate.pdf, accessed: 03.04.2018r.
  • [2] Y. S. Tian, C. Z. Chen, L. B. Chen, J. H. Liu, T. Q. Lei, J. Mater. Sci. 40, 4387-4390 (2005).
  • [3] Marc Long, H.J. Rack, Wear 249, 157-167 (2001).
  • [4] S. Fouvry, C. Paulin, S. Deyber, Tribol. Int. 42, 461-474 (2009).
  • [5] D. E. Alman, J. A. Hawk, Wear 225-229, 629-639 (1999).
  • [6] H. O. Gülsoy, V. Gunay, T. Baykara, Powder Metall. 58 (1), 30-35 (2015).
  • [7] A. A. M. da Silva, A. Meyer, J. F. dos Santos, C. E. F. Kwietniewski, T. R. Strohaecker, Compos. Sci. Technol. 64, 1495-1501 (2004).
  • [8] C. Poletti, M. Balog, T. Schubert, V. Liedtke, C. Edtmaier, Compos. Sci. Technol. 68 (9), 2171-2177 (2008).
  • [9] N. Takahashi, T. Sato, S. Nakatsuka, K. Fujiwara, K. Yokozekii, Titanium metal matrix composite development for commercial aircraft landing gear structure, Proceedings of 28th International Congress of The Aeronautical Sciences 2012, Brisbane, Australia, (2012).
  • [10] L. Cai, Y. Zhang, L. Shi, H. Yang, M. Xi, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. (Eng Ed), 13 (6), 551-557 (2006).
  • [11] K. Van Acker, D. Vanhoyweghen, R. Persoons, J. Vangrunderbeek, Wear 258 (1-4), 194-202 (2005).
  • [12] D. T. Cavanaugh, Graduate Theses and Dissertations, Evaluation of titanium carbide metal matrix composites deposited via laser cladding, Iowa State University, Ames, USA (2015).
  • [13] Y. L. Qin, L Geng, D. R. Ni, J. Compos. Mater. 46 (21), 2637-2645 (2012).
  • [14] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami, M. Kawahara, I. Yamauchi, Mater. Sci. Eng. A 428, 175-179 (2006).
  • [15] J. E. Oghenevweta, D. Wexler, A. Calka, J. Alloys Compd. 701, 380-391 (2017).
  • [16] M. J. Bermingham, D. Kent, H. Zhan, D. H. StJohn, M. S. Dargusch, Acta Mater. 91, 289-303 (2015).
  • [17] S. Roy, S. Suwas, S. Tamirisakandala, D. B. Miracle, R. Srinivasan, Acta Mater. 59, 5494-5510 (2011).
  • [18] M. Sherif El-Eskandarany (Ed.), Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, Wiliam Andrew Publishing, Oxford (2015)
  • [19] R. Chaudhari, R. Bauri, Metallogr. Microstruct. Anal. 3, 30-35 (2014).
  • [20] A. Biedunkiewicz, J. Sol-Gel. Sci. Technol. 59, 448-455 (2011).
  • [21] http://www.specs.de/cms/upload/PDFs/ApplNotes/Focus_500/ANote_xps_Ti_Al_V.pdf accessed 24.04.2018
  • [22] http://www.xpsfitting.com/2008/09/aluminum.html, accessed 25.04.2018
  • [23] D. E. MacDonald, B. E. Rapuano, H. C. Schniepp, Colloids Surf., B 82 (1), 173-181 (2011).
  • [24] D. Kuscer, J. Kovač, M. Kosec, R. Andriesen, J. Eur. Ceram. Soc. 28, 577-584 (2008).
  • [25] M. C. Biesinger, L.W.M. Lau, A. R. Gerson, R.S.C Smart, Appl. Surf. Sci. 257, 887-898 (2010).
  • [26] M. Magnuson, E. Lewin, L. Hultman, U. Jansson, Phys. Rev. B 80, 235108 (2009).
  • [27] R. J. Wróbel, S. Becker, Vacuum 84, 1258-1265 (2010).
  • [28] A. Gęsikiewicz-Puchalska, M. Zgrzebnicki, B. Michalkiewicz, U. Narkiewicz, A. W. Morawski, R. J. Wróbel, Chem. Eng. J. 309, 159-171 (2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7460e400-61b4-494a-9cef-89e2b283cf54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.