Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we introduce a novel block preconditioner for block two-by-two linear equations by expanding the dimension of the coefficient matrix. Theoretical results on the eigenvalues distribution of the preconditioned matrix are obtained, and a feasible implementation is discussed. Some numerical examples, including the solution of the Navier-Stokes equations, are presented to support the theoretical findings and demonstrate the preconditioner’s efficiency.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230260
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
- School of Mathematics and Physics, Hunan University of Arts and Science, Changde, Hunan 415000, P. R. China
autor
- Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy
autor
- College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan 611130, P. R. China
Bibliografia
- [1] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Science & Business Media, NewYork, 2012.
- [2] Z. Chen, Finite Element Methods and Their Applications, Springer, Berlin, 2005.
- [3] G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput. 27 (2005), 553–574.
- [4] W. Van Dijk and F. M. Toyama, Accurate numerical solutions of the time-dependent Schrödinger equation, Phys. Rev. E. 75 (2007), 036707, 1–10.
- [5] J.-H. Zhang and H. Dai, A new block preconditioner for complex symmetric indefinite linear systems, Numer. Algorithms 74 (2017), 889–903.
- [6] Y. Cao and Z.-R. Ren, Two variants of the PMHSS iteration method for a class of complex symmetric indefinite linear systems, Appl. Math. Comput. 264 (2015), 61–71.
- [7] K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge University Press, Cambridge, 2005.
- [8] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software 38 (2011), no. 1, 1–25.
- [9] M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix. Anal. Appl. 26 (2004), no. 1, 20–41.
- [10] Z.-Z. Bai, G. H. Golub, and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix. Anal. Appl. 24 (2003), no. 3, 603–626.
- [11] Y. Cao, Z.-R. Ren, and Q. Shi, A simplified HSS preconditioner for generalized saddle point problems, BIT Numer. Math. 56 (2016), 423–439.
- [12] Y. Cao, L.-Q. Yao, and M.-Q. Jiang, A modified dimensional split preconditioner for generalized saddle point problems, J. Comput. Appl. Math. 250 (2013), 70–82.
- [13] Y. Cao, S.-X. Miao, and Y.-S. Cui, A relaxed splitting preconditioner for generalized saddle point problems, Comput. Appl. Math. 34 (2015), 865–879.
- [14] M. Benzi and X.-P. Guo, A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations, Appl. Numer. Math. 61 (2011), no. 1, 66–76.
- [15] M. Benzi, M. Ng, N. Qiang, and W. Zhen, A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations, J. Comput. Phys. 230 (2011), 6185–6202.
- [16] J.-L. Zhang, An efficient variant of HSS preconditioner for generalized saddle point problems, Numer. Linear Algebra Appl. 25 (2018), no. 4, 1–14.
- [17] Z.-Z. Bai, M. K. Ng, and Z.-Q. Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix. Anal. Appl. 31 (2009), no. 2, 410–433.
- [18] G.-F. Zhang, Z.-R. Ren, and Y.-Y. Zhou, On HSS-based constraint preconditioners for generalized saddle point problems, Numer. Algorithms, 57 (2011), 273–287.
- [19] Y. Cao, M.-Q. Jiang, and Y.-L. Zheng, A splitting preconditioner for saddle point problems, Numer. Linear Algebra Appl. 18 (2011), no. 5, 875–895.
- [20] I. N. Konshin, M. A. Olshanskii, and Y. V. Vassilevski, ILU preconditioners for nonsymmetric saddle-point matrices with application to the incompressible Navier-Stokes equations, SIAM J. Sci. Comput. 37 (2015), no. 5, A2171–A2197.
- [21] J.-H. Zhang and H. Dai, A new splitting preconditioner for the iterative solution of complex symmetric indefinite linear systems, Appl. Math. Lett. 49 (2015), 100–106.
- [22] Q.-Q. Shen and Q. Shi, A variant of the HSS preconditioner for complex symmetric indefinite linear systems, Comput. Math. Appl. 75 (2018), no. 3, 850–863.
- [23] M. Frigo, N. Castelletto, and M. Ferronato, A relaxed physical factorization preconditioner for mixed finite element coupled poromechanics, SIAM J. Sci. Comput. 41 (2019), no. 4, B694–B720.
- [24] M. J. Gander, Q. Niu, and Y. Xu, Analysis of a new dimension-wise splitting iteration with selective relaxation for saddle point problems, BIT Numer. Math. 56 (2016), no. 2, 441–465.
- [25] Y. Cao, J.-L. Dong, and Y.-M. Wang, A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation, J. Comput. Appl. Math. 273 (2015), 41–60.
- [26] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput. 75 (2006), 791–815.
- [27] W. Chao, T.-Z. Huang, and C. Wen, A new preconditioner for indefinite and asymmetric matrices, Appl. Math. Comput. 219 (2013), 11036–11043.
- [28] H. Chen, X. Li, and Y. Wang, A splitting preconditioner for a block two-by-two linear system with applications to the bidomain equations, J. Comput. Appl. Math. 321 (2017), 487–498.
- [29] Q. Zheng and L. Lu, A shift-splitting preconditioner for a class of block two-by-two linear systems, Appl. Math. Lett. 66 (2016), no. 3, 54–60.
- [30] M. Masoudi and D. K. Salkuyeh, An extension of the positive-definite and skew-Hermitian splitting method for preconditioning of generalized saddle point problems, Comput. Math. Appl. 79 (2020), no. 8, 2304–2321.
- [31] Y. Cao, A block positive-semidefinite splitting preconditioner for generalized saddle point linear systems, J. Comput. Appl. Math. 374 (2020), 112787.
- [32] W.-H. Luo, X.-M. Gu, and B. Carpentieri, A dimension expanded preconditioning technique for saddle point problems, BIT Numer. Math. 62 (2022), no. 4, 1983–2004.
- [33] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74568b1a-3499-446e-a674-cc6e3e3c2f05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.