PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation of the influence of slot geometry on the magnetic flux density of the air gap

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work is to investigate the influence of slotted air gap constructive parameters on magnetic flux density of rotating machines. For this purpose, different approaches were used to solve the air gap field diagram using finite element method and the magnetic field distribution uniformity was evaluated by Carter's factor calculation on two-dimensional and three-dimensional models. Sensitivity analysis of slot constructive parameters was performed and results show that slot geometry modifies the magnetic flux on air gap and shifts the air gap magnetic equipotential midline of double slotted machines. Finally, minimization of Carter’s factor on two-dimensional model presents an optimized slot geometry with a near uniform magnetic flux density distribution.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Federal Institute of Goias, IFG and Federal University of Goias, UFG, Brazil
  • Institute of Systems and Robotics, ISR of Coimbra University, UC, Rua Silvio Lima, Zip 3030-194, Coimbra, Portugal
autor
  • Institute of Systems and Robotics, ISR of Coimbra University, UC, Rua Silvio Lima, Zip 3030-194, Coimbra, Portugal
autor
  • Federal Institute of Goias, IFG and Federal University of Goias, UFG, Brazil
  • Federal Institute of Goias, IFG and Federal University of Goias, UFG, Brazil
autor
  • Federal Institute of Goias, IFG and Federal University of Goias, UFG, Brazil
  • Experimental & Technological Research and Study Group, NExT of Federal Insitute of Goias, IFG, Rua 75, 46, Centro, Zip: 74055-110, Goiania, Goias, Brazil
  • Electrical and Computer Engineering School
Bibliografia
  • [1] V.H. Juha Pyrhönen, Tapani Jokinen, Design of rotating electrical machines. John Wiley & Sons, Ltd, 2014.
  • [2] D.A. Lowther, "The Development of Industrially-Relevant Computational Electromagnetics Based Design Tools," IEEE Trans. on Magnetics, vol. 49, no. 5, pp. 2375-2380, May 2013.
  • [3] G. Kron, "Induction Motor Slot Combinations Rules to Predetermine Crawling, Vibration, Noise and Hooks in the Speed-Torque Curve,” Transactions of the American Institute of Electrical Engineers, vol. 50, no. 2, pp. 757-767, June 1931.
  • [4] T.A. Lipo, Introduction to AC Machine Design. Wisconsin Power Electronics Research Center, Wisconsin, 2004.
  • [5] E.M. Freeman, "The calculation of harmonics, due to slotting, in the flux-density waveform of a dynamo-electric machine," in Proceedings of the IEE - Part C: Monographs, vol. 109, no. 16, pp. 581-588, September 1962.
  • [6] G. Liebmann, "The Change of Air-Gap Flux in Electrical Machines due to the Displacement of Opposed Slots," in Proceedings of the IEE - Part C: Monographs, vol. 104, no. 5, pp. 204-207, March 1957.
  • [7] F.W. Carter, "Corrigendum: The magnetic field of the dynamo-electric machine," in Electrical Engineers, Journal of the Institution of, vol. 65, no. 371, pp. 1025-, November 1927.
  • [8] F.W. Carter, "Note on air-gap and interpolar induction," in Electrical Engineers, Journal of the Institution of, vol. 29, no. 146, pp. 925-933, July 1900.
  • [9] F.W. Carter, “Air-gap induction”, Electrical Word and Engineer, vol. 38, no. 22, pp. 884-888, November 1901.
  • [10] A. Langsdorf, Principles of Direct Current Machines. MacGraw-Hill: New York, 1959.
  • [11] H. VuXuan, D. Lahaye, H. Polinder and J.A. Ferreira, "Improved model for design of permanent magnet machines with concentrated windings," 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, 2011, pp. 948-954.
  • [12] H. Vu Xuan, D. Lahaye, H. Polinder and J.A. Ferreira, "Influence of stator slotting on the performance of permanent-magnet machines with concentrated windings," in IEEE Transactions on Magnetics, vol. 49, no. 2, pp. 929-938, Feb. 2013.
  • [13] W.P. Calixto, B. Alvarenga, A.P. Coimbra, A.J. Alves, L. Martins Neto, M. Wu, W.G. da Silva and E. Delbone, “Carter’s fator calculation using domain transformations and the finite elemento method,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 25, n0. 3, pp. 236-247, 2012.
  • [14] A.C. Viorel, I.A. Viorel and L. Strete, "On the calculation of the Carter factor in the slotted electric machines," 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, 2014, pp. 332-336.
  • [15] Z.X. Fang, Z.Q. Zhu, L.J. Wu and Z.P. Xia, "Simple and accurate analytical estimation of slotting effect on magnet loss in fractional-slot surface-mounted PM machines," 2012 XXth International Conference on Electrical Machines, Marseille, 2012, pp. 464-470.
  • [16] W.P. Calixto, J.C. da Mota and B.P. Alvarenga, “Methodology for the reduction of parameters in the inverse transformation of Schwartz-Christoffel applied to electromagnetic devices with axial geometry”, International Journal of Numerical Modelling, vol. 24, 2001.
  • [17] W.P. Calixto, E.G. Marra, L. da Cunha Brito and B.P. Alvarenga, “A new metthodology to calculate Carter fator using genetic algorithms,” International Journal of Numerical Modelling, vol. 24, 2011.
  • [18] J.P.C. Kleijen, Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models, pp. 173-223, Johm Wiley & Sons, Inc. 2007, [Online] Available: http://dx.doi.org/10.1002/ 9780470172445.ch6.
  • [19] K.L. Du and M.N.S. Swamy, Search and optimization by metaheuristics: techniques and algorithms inspired by nature, Birkhäuser, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-745172f5-33ad-44f3-aecc-e3c390b4b9b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.