PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Predistortion of Wideband Signals with Reduced Complexity Based on Feedback Wiener System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Digital predistortion (DPD) using baseband signals is commonly used for power amplifier linearization. This paper is devoted to this subject and aims to reduce DPD complexity. In this study, we propose a structure that allows to decrease the number of DPD parameters by using multiple blocks, with each one of them dedicated to characterizing the non-linear behavior and/or memory effects. Such a structure is based on the feedback Wiener system, involving a FIR filter used as a feedback path to reproduce the PA inverse dynamics. A memory polynomial block (MP) is inserted as the final element to minimize the modeling errors. A relevant model identification method, based on an iterative algorithm, has been developed as well. The proposed architecture is used for the linearization of a commercial class-AB LDMOS RF PA by NXP Semiconductors, in wideband communication systems. Comparison of performance with the conventional generalized memory polynomial model (GMP) shows that the proposed model offers similar results, with its advantage consisting in the reduced number of parameters.
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • XLIM Laboratory UMR-CNRS 7252, Institute of Technology of Angoulême, University of Poitiers, 4 avenue de Varsovie, 16000 Angoulême, France
autor
  • XLIM Laboratory UMR-CNRS 7252, Institute of Technology of Angoulême, University of Poitiers, 4 avenue de Varsovie, 16000 Angoulême, France
  • XLIM Laboratory UMR-CNRS 7252, Institute of Technology of Angoulême, University of Poitiers, 4 avenue de Varsovie, 16000 Angoulême, France
Bibliografia
  • [1] P. Reynaert and M. Steyaert, „Mobile communication systems and power amplication”, in RF Power Amplifiers for Mobile Communications. Springer Science & Business Media, 2006, pp. 9-64 (ISBN: 9781402051166).
  • [2] A. A. M. Saleh, „Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers”, IEEE Trans. on Commun., vol. 29, no. 11, pp. 1715-1720, 1981 (DOI: 10.1109/TCOM.1981.1094911).
  • [3] J. Vuolevi, T. Rahkonen, and J. Manninen, „Measurement technique for characterizing memory effects in RF power amplifiers”, IEEE Trans. on Microw. Theory and Techniq., vol. 49, no. 8, pp. 1383-1389, 2001 (DOI: 10.1109/22.939917).
  • [4] H. Ku, M. D. Mckinley, and J. Kenney, „Quantifying memory effects in RF power amplifiers”, IEEE Trans. on Microw. Theory and Techniq., vol. 50, no. 12, pp. 2843-2849, 2002 (DOI: 10.1109/TMTT.2002.805196).
  • [5] E. Ngoya, C. Quindroit, and J. M. Nebus, „On the continuous-time model for nonlinear memory modeling of RF power amplifiers”, IEEE Trans. on Microw. Theory and Techniq., vol. 57, no. 12, pp. 3278-3292, 2009 (DOI: 10.1109/TMTT.2009.2033297).
  • [6] C. S. Aitchison, M. Mbabele, M. R. Moazzam, D. Budimir, and F. Ali, „Improvement of third-order intermodulation product of RF and microwave amplifiers by injection”, IEEE Trans. on Microw. Theory and Techniq., vol. 49, pp. 1148-1154, 2001 (DOI: 10.1109/22.925508).
  • [7] Y. Aimer, B. S. Bouazza, S. Bachir, and C. Duvanaud, „Interleaving technique implementation to reduce PAPR of OFDM signal in presence of non-linear amplification with memory effects”, J. of Telecommun. and Inform. Technol., no. 3, 2018 (DOI: 10.26636/jtit.2018.123517).
  • [8] M. Vaskovic, „Compensation of nonlinear distortion in RF amplifiers for mobile communications”, Ph.D. thesis, University of Westminster, London, England, 2014 [Online]. Available: https://westminsterresearch.westminster.ac.uk/item/8yvxv/compensation-of-nonlinear-distortion-in-rf-amplifiers-for-mobilecommunications
  • [9] S. Bachir, C. E. Nicusor, and C. Duvanaud, „Linearization of RF power amplifiers using adaptive Kalman filtering algorithm”, J. of Circ., Syst., and Computers, vol. 20, no. 6, pp. 1001-1018, 2011 (DOI: 10.1142/S0218126611007724).
  • [10] C. Nader, P. N. Landin, W. Van Moer, N. Bjorsell, and P. Handel, „Performance evaluation of peak-to-average power ratio reduction and digital pre-distortion for OFDM based systems”, IEEE Trans. on Microw. Theory and Techniq., vol. 59, no. 12, pp. 3504-3511, 2011 (DOI: 10.1109/TMTT.2011.2170583).
  • [11] I. Teikari, „Digital predistortion linearization methods for RF power amplifiers”, Ph.D. thesis, Aalto University of Technology, Espoo, Finland, 2008 [Online]. Available: http://lib.tkk.fi/Diss/2008/isbn9789512295463/isbn9789512295463.pdf
  • [12] M. A. Hussein, Y.Wang, G. Peyresoubes, B. Feuvrie, and S. Toutain, „LUT/parametric digital predistortion approach for the linearization of power amplifiers characteristics”, in Proc. 38th Eur. Microwave Conf. EuMC 2008, Amsterdam, Netherlands, 2008, pp. 571-574 (DOI: 10.1109/EUMC.2008.4751516).
  • [13] P. Banelli and G. Baruffa, „Mixed BB-IF predistortion of OFDM signals in non-linear channels”, IEEE Trans. on Broadcast., vol. 47, pp. 137-146, 2001 (DOI: 10.1109/11.948266).
  • [14] X. Feng, „Efficient baseband digital predistortion techniques for linearizing power amplifier by taking into account nonlinear memory effect”, Ph.D. thesis, University of Nantes, Nantes, France, 2015 [Online]. Available: https://hal.archives-ouvertes.fr/tel-01206266
  • [15] L. Ding, „Digital predistortion of power amplifiers for wireless applications”, Ph.D. Thesis, Georgia Institute of Technology, Georgia, USA, 2004 [Online]. Available: https://smartech.gatech.edu/bitstream/handle/1853/5184/ding lei 200405 phd.pdf
  • [16] V. Volterra, „Theory of Functionals and of Integral and Integro-Differential Equations”. London: Blackie & Son Ltd, 1930.
  • [17] C. Yu, L. Guan, E. Zhu, and A. Zhu, „Band-limited Volterra seriesbased digital predistortion for wideband RF power amplifiers”, IEEE Trans. on Microw. Theory and Techniq., vol. 60, pp. 4198-4208, 2012 (DOI: 10.1109/TMTT.2012.2222658).
  • [18] H. E. Hamoud, T. Reveyrand, S. Mons, and E. Ngoya, „A comparative overview of digital predistortion behavioral modeling for multi-standards applications”, in Proc. Int. Worksh. on Integr. Nonlin. Microw. and Millim.-wave Circ. INMMIC 2018, Brive La Gaillarde, France, 2018 (DOI: 10.1109/INMMIC.2018.8430010).
  • [19] J. Kim and K. Konstantinou, „Digital predistortion of wideband signals based on power amplifier model with memory", Electron. Lett., vol. 37, no. 23, pp. 1417-1418, 2001 (DOI: 10.1049/el:20010940).
  • [20] S. Amin, P. Landin, P. Händel, and D. Rönnow, „2D extended envelope memory polynomial model for concurrent dual-band RF transmitters”, Int. J. of Microw. and Wirel. Technol., vol. 9, no. 8, pp. 1619{1627, 2017 (DOI: 10.1017/S1759078717000277).
  • [21] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, „A generalized memory polynomial model for digital predistortion of RF power amplifiers”, IEEE Trans. on Sig. Process., vol. 54, no. 10, pp. 3852-3860, 2006 (DOI: 10.1109/TSP.2006.879264).
  • [22] P. L. Gilabert, A. Cesari, G. Montoro, E. Bertran, and J. Dilhac, „Multi-lookup table FPGA implementation of an adaptive digital predistorter for linearizing RF power amplifiers with memory effects", IEEE Trans. on Microw. Theory and Techniq., vol. 56, no. 2, pp. 372-384, 2008 (DOI: 10.1109/TMTT.2007.913369).
  • [23] F. Guo, „A new identification method for Wiener and Hammerstein systems”, Ph.D. thesis, University of Karlsruhe, Germany, 2003 [Online]. Available: https://digbib.ubka.uni-karlsruhe.de/volltexte/fzk/6955/6955.pdf
  • [24] S. Afsardoost, T. Eriksson, and C. Fager, „Digital predistortion using a vector-switched model”, IEEE Trans. on Microw. Theory and Techniq., vol. 60, no. 4, pp. 1166-1174, 2012 (DOI: 10.1109/TMTT.2012.2184295).
  • [25] A. Zhu, „Decomposed vector rotation-based behavioral modeling for digital predistortion of RF power amplifiers”, IEEE Trans. On Microw. Theory and Techniq., vol. 63, no. 2, pp. 737-744, 2015 (DOI: 10.1109/TMTT.2014.2387853).
  • [26] T. H. C. Bouazza, S. Bachir, and C. Duvanaud, „Behavioral blocks model for complexity-reduced modeling of RF power amplifiers”, in Proc. of the IEEE Int. Symp. on Circ. and Syst. ISCAS 2019, Sapporo, Japan, 2019 (DOI: 10.1109/ISCAS.2019.8702517).
  • [27] B. Friedlander and M. Morf, „Least squares algorithms for adaptive linear-phase filtering”, IEEE Trans. on Acoust., Speech, and Sig. Process., vol. 30, no. 3, pp. 381-390, 1982 (DOI: 10.1109/TASSP.1982.1163903).
  • [28] A. Cheaito, „Analytical analysis of in-band and out-of-band distortions for multicarrier signals: Impact of non-linear amplification, memory effects and predistortion”, Ph.D. thesis, INSA Rennes, University of Bretagne Loire, Rennes, France, 2017 [Online]. Available: https://www.theses.fr/2017ISAR0001.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-744ffba9-4602-46ad-b559-e08ac42b9827
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.