PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Usuwanie mikroplastików z wód i ścieków

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Removal of microplastics from water and wastewater
Języki publikacji
PL
Abstrakty
PL
W artykule opisano charakterystykę procesów oczyszczania wód i ścieków w zakresie usuwania mikroplastików (MPs). Pośród fizycznych metod oczyszczania za najbardziej efektywne w usuwaniu MPs uznaje się procesy membranowe oraz filtrację pospieszną. Metody chemiczne, takie jak: koagulacja, elektrokoagulacja czy zaawansowane utlenianie cechuje zróżnicowana efektywność, jednak są udoskonalane w kierunku poprawy wydajności usuwania MPs. W grupie metod biologicznych najbardziej efektywne są bioreaktory membranowe. Zastosowanie zróżnicowanych i wielostopniowych technologii oczyszczania wód i ścieków daje możliwość eliminacji MPs nawet w zakresie 98-100%. Ograniczeniem zastosowania efektywnej technologii są koszty eksploatacyjne, utylizacja odpadów oraz zapewnienie ograniczenia ponownej migracji MPs do środowiska.
EN
The article presents characteristics of the processes of water and wastewater treatment in the field of microplastics (MPs) removing. Among the physical methods of treatment membrane techniques and rapid filtration are the most effective in MPs eliminating. Chemical methods such as coagulation, electrocoagulation and advanced oxidation are moderately effective, but they are being improved to higher efficiency of MPs removal. In the group of biological methods, membrane bioreactors are the most effective. The use of diversified and multi-stage water and wastewater treatment technologies makes it possible to MPs eliminate even in the range of 98-100%. The application of effective technology is limited by operating costs and the problem of waste disposal, so that the removed MPs are not returned to the environment.
Czasopismo
Rocznik
Tom
Strony
44--49
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Uniwersytet Bielsko-Bialski w Bielsku-Białej, Wydział Inżynierii Materiałów, Budownictwa i Środowiska, Bielsko-Biała
Bibliografia
  • [1] Singh S., Kalyanasundaram M., Diwan V. Removal of microplastics from wastewater: available techniques and way forward. Water Science and Technology 2021, 84(12), 3689-3704. Doi: 10.2166/wst.2021.472
  • [2] Pivokonsky M., Cermakova L., Novotna K., Peer P., Gajthaml T., Janda V. Occurence of microplastics in raw and treated drinking water. Science of the Total Environment 2018, 643, 1644-1651.
  • [3] Mintening S.M., Löder M.G., Primpke S., Gerdts G. Low numbers of microplastics detected in drinking water from ground water sources. Science of the Total Environment. 2019, 648, 631-635.
  • [4] He D., Luo Y., Lu S., Liu M., Song Y., Lei L. Microplastics in soil: Analytical methods, pollution characteristics and ecological risks. Trends in analytical chemistry 2018, 109, 163-172.
  • [5] Dris R., Gasperi J., Mirande C., Mandin C., Guerrouache M., Langlois V., Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution 2017, 221, 453-458.
  • [6] Kosuth M., Mason S. A., Wattenberg E. V. Anthropogenic contamination of tap water, beer, and sea salt. PLOS One 2018, 13, 1-18. Doi:10.1371/journal.pone.0194970.
  • [7] Barboza L.G., Vethaak A.D., Lavorante B.R., Lundebye A.K., Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336-348.
  • [8] Conti G. O., Ferrante M., Banni M., Favara C., Nicolosi I., Cristaldi A., Fiore M., Zuccarello P. Micro- and nano-plastics in edible fruits and vegetables. The first diet risks assessment for the general population. Environmental Research 2020, 187, 109677. doi:10.1016/j.envres.2020.109677
  • [9] Zhang Q., Xu E.G., Li J., Chen Q., Ma L., Zeng E. Y., Shi H. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science and Technology, 2020, 54(7), 3740-3751, doi: 10.1021/acs.est.9b04535
  • [10] Mrowiec B. Występowanie mikroplastików w słodkich wodach powierzchniowych. Instal 2022, 10, 64-67, doi: 10.36119/15.2022.10.9.
  • [11] Ngo P.L., Pramanik N/K., Shah K., Rouchand R. Pathway, classification and removal efficiency of microplastics in wasterwater treatment plants. Environmental Pollution, 2019, 255, 113326, httpa://doi.org/10.1016/j/envpol.2019.113326.
  • [12] Kown H.J., Hidayaturrahman H., Peera S.G., Lee T.G. Elimination of microplastics at different stages in wastewater treatment plants. Water 2022, 14, 2404.
  • [13] Liu W., Zhang J., Liu H., Guo X., Zhang X., Yao X., Cao Z., Zhang T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environmental International, 2021, 146, 106277.
  • [14] Dey T.K., Uddin M.E., Jamal M. Detection and removal of microplastics in wastewater: evolution and impact. Environ. Sci. Pollut. Res. 2021, 28, 16925-16947.
  • [15] Bodzek M., Pohl A. removal of microplastics in unit processes used in water and wastewater treatment: a review. Archives of Environmental Protection, 2022, 48(4), 102-128.
  • [16] Wang Q., Hernandez-Crespo C., Santoni M., Van Hulle S., Rousseeau D.P. Horizontal subsurface flow constructed wetlands as tertiary treatment: Can they be an efficient barrier for microplastics pollution? Sci. Total Environ. 2020, 137785, doi: 10.1016/j.seppur.2019.05.052
  • [17] Dalmau-Soler J., Ballesteros-Cano R., Boleda M.R., Paraira M., Ferrer N., Lacorte S. Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain), Environ. Sci. Pollut. Res. Int. 2021, 28, 59462-59472.
  • [18] Cheng Y.L., Kim J.G., Kim H.B., Choi J.H., Tsang Y.F., Baek K. Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities; a review. Chem. Eng. J. 2021, 410, 128381.
  • [19] Zhang Y., Diehl A., Lewandowski A., Gopalakrishnan K., Baker T. Removal efficiency of micro- and nanoplastics (180nm-125mm) during drinking water treatment. Sci. Total Environ. 2020, 720, 137383.
  • [20] Wang J., Sun C., Huang Q., Chi Y., Yan J., Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars, J. Hazard. Mater. 2021, 419, 126486.
  • [21] Shi X., Zhang X., Gao W., Zhang Y., He D. Removal of microplastics from water by magnetic nano-Fe3O4, Sci. Total Environ. 2022, 802, 149838.
  • [22] Ma B., Xue W., Hu C., Liu H., Qu J., Li L. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment, Chem. Eng. J. 2019a, 359, 159-167.
  • [23] Gao W., Zhang Y., Mo A., Jiang J., Liang Y., Cao X., He D. Removal of microplastics in water: Technology progress and green strategies. Green Analytical Chemistry, 2022, 3, 100042, https://doi.org/10.1016/j.gre-eac.2022.100042.
  • [24] Badola N., Bahuguna A., Sasson Y., Chauhan J.S. Microplastics removal strategies: A step toward finding the solution. Front. Environ. Sci. Eng. 2022, 16(1): 7, doi: 10.1007/s11783-021-1441-3
  • [25] Talvitie J., Mikola A., Koistinen A., Setala O. Solution to microplastic pollution - removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017a, 123, 401-407.
  • [26] Hidayaturrahman H., Lee, T.G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696-702, doi: 10.1016/j.marpolbul.2019.06.071.
  • [27] Yahyanezhad N., Bardi M.J, Aminirad H. An evaluation of microplastics fate in the waste-water treatment plants: frequency and removal of microplastics by microfiltration membrane. Water Practice and Technology 2021. https://doi.org/10.2166/wpt.2021.036
  • [28] Enfrin M., Dumée L.F. Lee, J. Nano/microplastics in water and wastewater treatment processes - origin, impact and potential solutions, Water Research. 2019, 161, 621-638, doi: 10.1016/j.watres.2019.06.049
  • [29] Poerio T., Piacentini E., Mazzei R. Membrane processes for microplastic removal. Molecules 2019, 24, 4148. https://doi;10.3390/molecules24224148
  • [30] Chen Y., Chen Y., Miao C., Wang Y., Gao G., Yang R., Zhu H., Wang J., Li S., Lan Y. Metal-organic framework-based foams for efficient microplastics removal. J. Mater. Chem. A 2020, 8, 14644-14652.
  • [31] Siipola V., Pflugmacher S., Romar H., Wendling L., Koukkari P. Low-cost biochar adsorbents for water purification including microplastics removal. Appl. Sci. 2020, 10, 788, doi: 10.3390/app10030788.
  • [32] Sun C., Wang Z., Chen L., Li F. Fabrication of robust and compressive chitin and Graphene oxide sponges for removal of microplastics with different functional groups. Chem. Eng. J. 2020, 393, 124796.
  • [33] Tang Y., Zhang S., Su Y., Wu D., Zhao Y., Xie B. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem. Eng. J. 2021, 406, 126804.
  • [34] Wang J., Sun C., Huang Q., Chi Y., Yan J. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. J. Hazard. Mater. 2021, 419, 419, 126486.
  • [35] Shi X., Zhang X., Gao W., Zhang Y., He D. Removal of microplastics from water by magnetic nano-Fe3O4. Sci. Total Environ. 2022, 802. 149838.
  • [36] Lares M., Ncibi M.C., Sillanpaa M., Sillanpaa M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res., 2018, 133, 236-246, doi: 10.1016/j.watres.2018.01.049
  • [37] Long Z., Pan Z., Wang W., Ren J., Yu X., Lin L., Lin H., Chen H., Jin X. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China, Water Res. 2019, 155, 255-265, doi:10.1016/j.watres.2019.02.028
  • [38] Michielssen M.R., Michielssen E.R., Ni J., Duhaime M.B. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed, Environmental Science: Water Research and Technology, 2016, 2(6), 1064-1073, doi:10.1039/C6EW00207B.
  • [39] Mrowiec B. Problem obecności mikroplastiku w ściekach i osadach ściekowych. Zagrożenia i zarządzanie w gospodarce wodno-ściekowej XXI wieku - wybrane problemy. Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej, 2021, 17-31.
  • [40] Coppock R.L., Cole M., Lindeque P.K., Queirós A.M, Galloway T.S. A small-scale, portable method for extracting microplastics from marine sediments, Environmental Pollution, 2017, 230, 829-837, doi:10.1016/j.envpol.2017.07.017
  • [41] Zhou G., Wang Q., Li J., Li Q., Xu H., Ye Q., Wang Y., Shu S., Zhang J. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: performance and mechanism, Sci. Total Environ. 2021, 752, 141837.
  • [42] Tang W, Li H., Fei L., Wei B., Zhou T, Zhang H. The removal of microplastics from water by coagulation: A comprehensive review. Sci. Total Environ. 2022, 851, 158224.
  • [43] Wang Z., Lin T., Chen W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP), Sci. Total Environ. 2020, 700, 134520.
  • [44] Ma B., Xue W. Ding Y., Hu C., Li H., Qu J. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J. Environ. Sci. 2019b, 78, 267-275.
  • [45] Padervand M., Lichtfouse E., Didier R., Wang C. Removal of microplastics from the environment. A review. Environmental Chemistry Letters 2020, 18, 807-828. https://doi.org/10.1007/s10311-020-00983-1
  • [46] Akarsu C., Deniz, F. Electrocoagulation/electroflotation process for removal of organics and microplastics in laundry wastewater, CLEAN-Soil, Air, Water, 2020, 49, 2000146, doi:0.1002/clen.202000146
  • [47] Liu W., Zhang J., Liu H., Guo X., Zhang X., Yao X., Cao Z., Zhang T. A review of the microplastics in global wastewater treatment plants. Characteristics and mechanisms. Environment International 2021, 146, 106277. https://doi.org/10.1016/j.envint.2020.106277
  • [48] Ariza-Tarazona M.C., Villarreal-Chiu J.F., Barbieri V., Siligardi C., Cedillo-Gonzalez E.I. New strategy for microplastic degradation: green photocatalysis using a protein-based porpous N-TiO2 semiconductor. Ceram int. 2019, 45 (7) 9618-9624. doi.org/10.1016/j.ceramint. 2018.10.208
  • [49] Chen R., Qi M., Zhang G. Yi C. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield, IOP Conference Series: Earth and Environmental Science, 2018, 113, 012208, doi: 10.1088/1755-1315/113/1/012208
  • [50] Miao F., Liu Y., Gao M., Yu X., Xiao P., Wang M., Wang S., Wang X. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J. Hazard. Mater. 2020, 399, 123023.
  • [51] Park S.Y., Kim C.G. Biodegradation of micropolyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site, Chemosphere, 2019, 222, 527-533.
  • [52] Skariyachan S., Pati A.A., Shanka A., Manjunath M., Bachappanavar N., Kiran S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants, Polym. Degrad. Stab. 2018, 149, 52-68.
  • [53] Nolte T.M., Hartmann N.B., Kleijn J.M., Garnes j., van de Meent D., Hendriks A.J., Baun A. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat. Toxicol. 2017, 183, 11-20. https://doi.org/101016/j.aqatox.2016.12.005
  • [54] Talvitie J., Mikola A., Setala O., Heinonen M., Koistinen A. How well is microlitter purified from wastewater? - a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 2017b, 109, 164-172.
  • [55] Ziajahromi S., Neale P.A., Rintoul L., Leusc, F.D. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Research, 2017, 112, 93-99, doi: 10.1016/j.watres.2017.01.042
  • [56] Baresel C., Harding M. Fang J. Ultrafiltration/granulated active carbon-biofilter: efficient removal of a broad range of micropollutants, Applied Sciences, 2019, 9(4), 710, doi: 10.3390/app9040710.
  • [57] Xiao K., Lianga S., Wanga X., Chena C., Huanga X. Current state and challenges of full-scale membrane bioreactor applications: A critical review, Bioresour. Technol. 2019, 271, 473-481, doi: 10.1016/j.bior-tech.2018.09.061
  • [58] Rocher V., Paffoni C., Goncalves A., Gu´erin S., Azimi S., Gasperi J., Moilleron R., Pauss A. Municipal wastewater treatment by biofiltration: comparisons of various treatment layouts. Part 1: assessment of carbon and nitrogen removal. Water Sci. Technol. 2012., 65, 1705-1712, doi: 10.2166/wst.2012.105.
Uwagi
1. Temat zaprezentowany podczas II Konferencji Naukowo-Technicznej „Nauka-Technologia-Środowisko” w dniach 27-29 września 2023 r. w Wiśle. Konferencja finansowana przez Ministra Edukacji i Nauki w ramach programu „Doskonała nauka” - moduł „Wsparcie konferencji naukowych” (projekt nr DNK/SP/546599/2022).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-744ebfdc-490e-4ccb-a7b9-4f8eab18fb9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.