Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The buckling curves, which enable the prediction of buckling resistance of steel structural elements, are physically connected with their type of cross-section, initial out-of-straightness, and the magnitude of residual stresses due to the different manufacturing technologies. It is known that hot-dip galvanisation changes and relives residual stresses, but so far the current design provisions do not take directly into account the impact of hot-dip galvanising on the reduction of residual stresses, and thus the reduction the generalised imperfection in the Ayrton-Perry model. The paper presents the difference between the relative buckling resistance of steel angles with residual stresses resulting from hot rolling and the same elements in which the magnitude of residual stresses was decreased by the hotdip galvanising process. Carried out tests and geometrically and materially non-linear analyses with imperfections (GMNIA) have shown that angles with residual stresses reduced by heat treatment caused by hot-dip galvanising have higher buckling resistance compared to those with residual stresses after hot rolling. This increase ranges from 2 to 7%. The analyses carried out confirmed that the predicted reduction factors c exhibit values closer to the buckling curve ‘a’, but these values do not reach the ‘a0’ curve recommended by the EN 50341-1 standard.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
332--341
Opis fizyczny
Bibliogr. 21 poz., fig., tab.
Twórcy
autor
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
autor
- Doctoral School of the Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Poland
Bibliografia
- 1. Vayas I., Jaspart J.-P., Bureau A., Tibolt M., Reygner S., Papavasiliou M. Telecommunication and transmission lattice towers from angle sections – the ANGELHY project. ce/ papers 2021; 4(2–4): 210–217. https://doi. org/10.1002/cepa.1283
- 2. EN 1993-1-1 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. CEN, 2005. Brussels.
- 3. ECCS. Manual on stability of steel structures. European Convention for Constructional Steel work, 1976. http://www.eccspublications.eu
- 4. Augustyn J. The influence of residual (welding) stresses on the stability of compression elements (in Polish). Inżynieria i Budownictwo 1962; 10: 392–395.
- 5. Schaper L., Tankova T., da Silva L. S., Knobloch. M. Effects of state‐of‐the‐art residual stress models on the member and local stability behaviour. Steel Construction, 2022; 15(4): 244–254. https://doi.org/10.1002/ stco.202200027
- 6. EN 50341-1 Overhead electrical lines exceeding AC 1 kV - Part 1: General requirements Common specifications. CEN, 2012, Brussels.
- 7. Jin Y., Sun M., Karimi K., Ziaeinejad A., Tayyebi K., Flores M. Effects of galvanizing on residual stresses and stress concentrations in RHS X-and T-Connections. Engineering Structures, 2013; 284: 115984. https://doi.org/10.1016/j. engstruct.2023.115984
- 8. Sun M., Packer J. A. Hot-dip galvanizing of cold-formed steel hollow sections: A state of-the-art review. Front. Struct. Civ. Eng, 2019; 13(1): 49–65. https://doi.org/10.1007/ s11709-017-0448-0
- 9. Chou A. P., Shi G., Liu C., Zhou L. Residual stress and compression buckling of large welded equal-leg steel angles. Journal of Constructional Steel Research, 2023; 201, 107756. https://doi.org/10.1016/j.jcsr.2022.107756
- 10. Shi G., Zhang Z., Zhou L., Gao Y. Experimental study and modeling of residual stresses of Q420 large-section angles. Journal of Constructional Steel Research, 2020; 167, 105958. https://doi. org/10.1016/j.jcsr.2020.105958
- 11. Kitipornchai S., Lee H. W. Inelastic buckling of single-angle. tee and double-angle struts. Journal of Constructional Steel Research, 1986; 6(1): 3–20. https://doi. org/10.1016/0143-974X(86)90018-0
- 12. Kitipornchai S., Lee H. W. Inelastic experiments on angle and tee struts. Journal of Constructional Steel Research, 1986; 6(3), 219–236. https:// doi.org/10.1016/0143-974X(86)90035-0
- 13. Može P., Cajot L. G., Sinur F., Rejec K., Beg. D. Residual stress distribution of large steel equal leg angles. Engineering Structures, 2014; 71: 35–47. https://doi.org/10.1016/j. jcsr.2022.107756
- 14. Kuklík V., Kudlacek J. Hot-dip galvanizing of steel structures. Butterworth-Heinemann, 2016.
- 15. de Menezes A.A., Vellasco P.C.D.S., de Lima L.R., da Silva A.T. Experimental and numerical investigation of austenitic stainless steel hot-rolled angles under compression. Journal of Constructional Steel Research, 2019; 152: 42– 56, https://doi.org/10.1016/j.jcsr.2018.05.033
- 16. Shi G., Zhou W.J., Bai Y., Liu, Z. Local buckling of steel equal angle members with normal and high strengths. International Journal of Steel Structures, 2014; 14: 447–455. https:// doi.org/10.1007/s13296-014-3002-0
- 17. Filipović A., Dobrić J., Marković Z., Baddoo N., Flajs Ž. Buckling resistance of stainless steel angle column. Građevinar, 2019; 71: 547– 558. https://doi.org/10.14256/JCE.2563.2018
- 18. Rzeszut. K., Garstecki A. Modeling of initial geometrical imperfections in stability analysis of thin-walled structures. Journal of Theoretical and Applied Mechanics, 2009; 47(3): 667–684. http://ptmts.org.pl/jtam/index.php/jtam/article/ view/v47n3p667
- 19. EN 1090-2 Execution of steel structures and aluminium structures - Part 2: Technical requirements for steel structures. CEN, 2018, Brussels.
- 20. ADINA 9.8. ADINA Theory and Modeling Guide Volume I: ADINA Solids & Structures. 2022.
- 21. Jastrzębski K., Ślęczka L. Strengthening of axially compressed bars in lattice towers under load–experimental investigations. ce/papers, 2023; 6(3–4): 1105–1110. https://doi. org/10.1002/cepa.2413
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74488ac9-6254-4cbb-a765-bd3681d1dc8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.