PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Optimized Propagation Model based on Measurement Data for Indoor Environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Propagation is an essential factor ensuring good coverage of wireless communications systems. Propagation models are used to predict losses in the path between transmitter and receiver nodes. They are usually defined for general conditions. Therefore, their results are not always adapted to the behavior of real signals in a specific environment. The main goal of this work is to propose a new model adjusting the loss coefficients based on empirical data, which can be applied in an indoor university campus environment. The Oneslope, Log-distance and ITU models are described to provide a mathematical base. An extensive measurement campaign is performed based on a strict methodology considering different cases in typical indoor scenarios. New loss parameter values are defined to adjust the mathematical model to the behavior of real signals in the campus environment. The experimental results show that the model proposed offers an attenuation average error of 2.5% with respect to the losses measured. In addition, comparison of the proposed model with existing solutions shows that it decreases the average error significantly for all scenarios under evaluation.
Rocznik
Tom
Strony
69--75
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Computer Science and Electronic, Universidad Técnica Particular de Loja, C/. Marcelino Champagnat S/N, 1101608 Loja, Ecuador
  • Department of Computer Science and Electronic, Universidad Técnica Particular de Loja, C/. Marcelino Champagnat S/N, 1101608 Loja, Ecuador
autor
  • Department of Computer Science and Electronic, Universidad Técnica Particular de Loja, C/. Marcelino Champagnat S/N, 1101608 Loja, Ecuador
  • Department of Computer Science and Electronic, Universidad Técnica Particular de Loja, C/. Marcelino Champagnat S/N, 1101608 Loja, Ecuador
  • Department of Computer Science and Electronic, Universidad Técnica Particular de Loja, C/. Marcelino Champagnat S/N, 1101608 Loja, Ecuador
Bibliografia
  • [1] J. S. Seybold, Introduction to RF Propagation. Wiley, 2005.
  • [2] U. Naik and V. N. Bapat, “Adaptive empirical path loss prediction models for indoor WLAN”, Wirel. Personal Commun., vol. 79, no. 2, pp. 1003–1016, 2014 (doi: 10.1007/s11277-014-1914-9).
  • [3] I. Dey, G. G. Messier, and S. Magierowski, “Joint fading and shadowing model for large office indoor WLAN environments”, IEEE Trans. on Antennas and Propag., vol. 62, no. 4, pp. 2209–2222, 2014 (doi: 10.1109/TAP.2014.2299818).
  • [4] J. H. Jung, J. Lee, J. H. Lee, Y. H. Kim, and S. C. Kim, “Raytracing-aided modeling of user-shadowing effects in indoor wireless channels”, IEEE Trans. on Antennas and Propag., vol. 62, no. 6, pp. 3412–3416, 2014 (doi: 10.1109/TAP.2014.2313637).
  • [5] M. Sasaki et al., “Path loss characteristics between different floors from 0.8 to 37 GHz in indoor office environments”, in Proc. 21st Int. Symp. on Antennas and Propag. ISAP 2016, Ginowan, Okinawa, Japan, 2016.
  • [6] N. G. Fernández, “Modelo de Cobertura en Redes Inalámbricas Basado en Radiosidad por Refinamiento Progresivo”, Doctoral Thesis, Universidad de Oviedo, Spain, 2006 (in Spanish)
  • [7] A. Samuylov, D. Moltchanov, Y. Gaidamaka, V. Begishev, R. Kovalchukov, P. Abaev, and S. Shorgin, “SIR analysis in squareshaped indoor premises”, in Proc. 30th Eur. Conf. on Modelling and Simul. ECMS 2016, Regensburg, Germany, 2016, pp. 692–697 (doi: 10.7148/2016-0692).
  • [8] I. Rodriguez, H. C. Nguyen, N. T. Jorgensen, T. B. Sorensen, and P. Mogensen, “Radio propagation into modern buildings: Attenuation measurements in the range from 800 MHz to 18 GHz”, in Proc. 80th Veh. Technol. Conf. VTC Fall 2014, Vancouver, DC, Canada, 2014, pp. 1–5 (doi: 10.1109/VTCFall.2014.6966147).
  • [9] O. Felekoglu, “Propagation and performance analysis for a 915 MHz wireless IR image transfer system”, Ph.D. dissertation, Naval Postgraduate School, Monterey CA, USA, 2005 [Online]. Available: http://hdl.handle.net/10945/2155
  • [10] C. Nerguizian, C. L. Despins, S. Affès, and M. Djadel, “Radiochannel characterization of an underground mine at 2.4 GHz”, IEEE Trans. on Wirel. Commun., vol. 4, no. 5, pp. 2441–2453, 2005 (doi: 10.1109/TWC.2005.853899).
  • [11] O. Fernandez, M. Domingo, and R. P. Torres, “Experimental Analysis of wireless data transmission systems in space platforms”, IEEE Antennas and Propag. Mag., vol. 46, no. 4, pp. 38–60, 2004 (doi: 10.1109/MAP.2004.1373998).
  • [12] T. Chrysikos, G. Georgopoulos, S. Kotsopoulos, and D. Zevgolis, “Site-specific validation of indoor RF models for commercial propagation topologies at 2.4 GHz”, in Proc. 7th Int. Symp. on Wirel. Commun. Syst. ISWCS 2010, York, United Kingdom, 2010, pp. 681–685 (doi: 10.1109/ISWCS.2010.5624276).
  • [13] F. Capulli, C. Monti, M. Vari, and F. Mazzenga, “Path Loss Models for IEEE 802.11 a Wireless Local Area Networks”, in Proc. 3rd Int. Symp. on Wirel. Commun. Syst. . ISWCS 2006, Valecia, Spain, 2006, pp. 621–624 (doi: 10.1109/ISWCS.2006.4362375).
  • [14] S. Y. Seidel and T. S. Rappaport, “914 MHz path loss prediction models for indoor wireless communications in multifloored buildings”, IEEE Trans. on Antennas and Propag., vol. 40, no. 2, pp. 207–217, 1992 (doi: 10.1109/8.127405).
  • [15] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design”, IEEE Trans. on Commun., vol. 63, no. 9, pp. 3029–3056, 2015 (doi: 10.1109/TCOMM.2015.2434384).
  • [16] M. Tolstrup, Indoor Radio Planning: A Practical Guide for 2G, 3G and 4G. Wiley, 2015.
  • [17] A. Hrovat, G. Kandus, and T. Javornik, “A survey of radio propagation modeling for tunnels”, IEEE Commun. Surveys Tutor., vol. 16, no. 2, pp. 658–669, 2014 (doi: 10.1109/SURV.2013.091213.00175).
  • [18] T. S. Rappaport, Wireless Communications – Principles and Practice. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002.
  • [19] ITU-T Recommendation P.1238-9, “Propagation Data and Prediction Methods for the Planning of Indoor Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz”, ITU, Geneva, July 2017 [Online]. Available: http://www.itu.int/rec/RREC-P.1238/eu
  • [20] C. Monti, A. Saitto, and D. Valletta, “Indoor radio channel models for IEEE 802.15.4 technology”, in Proc. 2nd Int. EURASIP Worksh. on RFID Technol. RFID 2008, Budapest, Hungary, 2008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-744580e8-96cc-4c5b-a746-87bc0d98f603
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.