PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Removal of Phenol Through Adsorption onto Synthetic Calcium Phosphates – A Study Encompassing Analyses of Kinetics and Thermodynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The characteristics and suitability of hydroxyapatite (HAP), tricalcium apatite phosphate (PTCa), and octocalcium apatite phosphate (OCPa), which possess similar attributes to those of an ideal adsorbent, were investigated to determine their efficacy in phenol removal. The aim of this paper is to assess the adsorption behavior of phenol on phosphates powders synthesized by the co-precipitation method at ambient temperature. Furthermore, the impact of initial phenol quantities and thermal conditions on the adsorption process was explored. X-ray diffraction analysis revealed the formation of HAP, PTCa, and OCPa structures under room temperature conditions. The sample morphologies were subjected to scrutiny utilizing MEB together with X-ray analysis. Additionally, chemical analysis revealed that Ca/P = 1.6, 1.5, and 1.33 for HAP, PTCa, and OCPa, respectively. The synthesized powders exhibited adsorption abilities of 2.86, 2.74, and 2.52 mg/g for HAP, PTCa, and OCPa, respectively, and reached equilibrium in approximately 80 minutes. The study revealed that the experimental data are appropriately represented by the Langmuir and Freundlich adsorption equations for HAP and PTCa, and Langmuir model in the case of OCPa, as well as by the pseudo-first-order and pseudo-second-order adsorption kinetics. Thermodynamic evaluations, including calculations of ΔG°, ΔH°, and ΔS°, were performed. The results indicated that the adsorption mechanisms exhibited physical characteristics, were thermally absorbing in the case of HAP and exothermic for the other two phosphates, PTCa and OCPa, and occurred spontaneously.
Twórcy
  • Laboratory of OCCE, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco
  • Laboratory of OCCE, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco
  • Laboratory of OCCE, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco
  • Laboratory of OCCE, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, PB. 133-14050 Kenitra, Morocco
Bibliografia
  • 1. Abussaud, B., Asmaly, H.A., Ihsanullah, Saleh, T.A., Gupta, V.K., Laoui, T., Atieh, M.A. 2016. Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide. Journal of Molecular Liquids, 213, 351–359. https://doi.org/10.1016/j.molliq.2015.08.044
  • 2. Alves, D.C.S., Coseglio, B.B., Pinto, L.A.A., Cadaval, T.R.S. 2020. Development of Spirulina/chitosan foam adsorbent for phenol adsorption. Journal of Molecular Liquids, 309. https://doi.org/10.1016/j.molliq.2020.113256
  • 3. Cheng, W.P., Gao, W., Cui, X., Ma, J.H., Li, R.F. 2016. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. Journal of the Taiwan Institute of Chemical Engineers, 62, 192– 198. https://doi.org/10.1016/j.jtice.2016.02.004
  • 4. Dehmani, Y., Alrashdi, A.A., Lgaz, H., Lamhasni, T., Abouarnadasse, S., Chung, I.M. 2020. Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. Arabian Journal of Chemistry, 13(5), 5474–5486. https://doi.org/10.1016/j.arabjc.2020.03.026
  • 5. El Bakri, A., Ferraa, N., Rhilassi, A. El, Bennani-Ziatni, M. 2024. Resorcinol elimination through adsorption onto synthetic calcium phosphates: investigations into kinetics and thermodynamics. International Journal of Chemical and Biochemical Sciences (IJCBS), 25(13).
  • 6. El Boujaady, H., El Rhilassi, A., Bennani-Ziatni, M., El Hamri, R., Taitai, A., Lacout, J.L. 2011. Removal of a textile dye by adsorption on synthetic calcium phosphates. Desalination, 275(1–3), 10–16. https://doi.org/10.1016/j.desal.2011.03.036
  • 7. El Boujaady, H., Mourabet, M., Bennani-Ziatni, M., Taitai, A. 2014. Adsorption/desorption of Direct Yellow 28 on apatitic phosphate: Mechanism, kinetic and thermodynamic studies. Journal of the Association of Arab Universities for Basic and Applied Sciences, 16, 64–73. https://doi.org/10.1016/j.jaubas.2013.09.001
  • 8. El Boujaady, H., Mourabet, M., El Rhilassi, A., Bennani-Ziatni, M., El Hamri, R., Taitai, A. 2017. Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium phosphate. Journal of Saudi Chemical Society, 21, S94– S100. https://doi.org/10.1016/j.jscs.2013.10.009
  • 9. El Rhilassi, A., Mourabet, M., El Boujaady, H., Bennani-Ziatni, M., Hamri, R. El, Taitai, A. 2012. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral. Applied Surface Science, 259, 376–384. https://doi.org/10.1016/j.apsusc.2012.07.055
  • 10. Fiamegos, Y., Stalikas, C., Pilidis, G. 2002. 4-Aminoantipyrine spectrophotometric method of phenol analysis Study of the reaction products via liquid chromatography with diode-array and mass spectrometric detection. Analytica Chimica Acta, 467.
  • 11. Freundlich, H. 1926. Colloid and Capillary Chemistry, Methuen, London.
  • 12. Giraldo, L., Moreno-Piraján, J.C. 2014. Study of adsorption of phenol on activated carbons obtained from eggshells. Journal of Analytical and Applied Pyrolysis, 106, 41–47. https://doi.org/10.1016/j. jaap.2013.12.007
  • 13. Hameed, B.H., Ahmad, A.A., Aziz, N. 2007. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chemical Engineering Journal, 133(1–3), 195–203. https://doi.org/10.1016/j.cej.2007.01.032
  • 14. Ho, Y.S., Mckay, G. 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. www.elsevier.com/locate/watres
  • 15. Ho, Y.S., Mckay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34.
  • 16. Hua, C., Zhang, R., Li, L., Zheng, X. 2012. Adsorption of phenol from aqueous solutions using activated carbon prepared from crofton weed. Desalination and Water Treatment, 37(1–3), 230–237. https://doi.org/10.1080/19443994.2012.661277
  • 17. Konggidinata, M.I., Chao, B., Lian, Q., Subramaniam, R., Zappi, M., Gang, D.D. 2017. Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto Ordered Mesoporous Carbon (OMC). Journal of Hazardous Materials, 336, 249–259. https://doi.org/10.1016/j.jhazmat.2017.04.073
  • 18. Lagergren, S. 1898. About the theory of so called adsorption of soluble substances, S. Vetenskapsakad, Hand. Band, 24(4), 1–39.
  • 19. Langmuir, Irving, B. 1916. The evaporation, condensation and reflection of molecules and the mechanism of adsorption.
  • 20. Li, H., Meng, F., Duan, W., Lin, Y., Zheng, Y. 2019. Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety, Academic Press, 184. https://doi.org/10.1016/j.ecoenv.2019.109658
  • 21. Lin, K., Pan, J., Chen, Y., Cheng, R., Xu, X. 2009. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Journal of Hazardous Materials, 161(1), 231–240. https://doi.org/10.1016/j.jhazmat.2008.03.076
  • 22. Liu, Q.S., Zheng, T., Wang, P., Jiang, J.P., Li, N. 2010. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157(2–3), 348–356. https://doi.org/10.1016/j.cej.2009.11.013
  • 23. Liu, X., Tu, Y., Liu, S., Liu, K., Zhang, L., Li, G., Xu, Z. 2021. Adsorption of ammonia nitrogen and phenol onto the lignite surface: An experimental and molecular dynamics simulation study. Journal of Hazardous Materials, 416. https://doi.org/10.1016/j.jhazmat.2021.125966
  • 24. Mahmoodi, N.M., Hayati, B., Arami, M., Lan, C. 2011. Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 268(1–3), 117– 125. https://doi.org/10.1016/j.desal.2010.10.007
  • 25. Michalowicz, J., Duda, W. 2007. Phenols – Sources and Toxicity. Polish J. of Environ. Stud., 16(3), 347–362.
  • 26. Mishra, P., Singh, K., Dixit, U. 2021. Adsorption, kinetics and thermodynamics of phenol removal by ultrasound-assisted sulfuric acid-treated pea (Pisum sativum) shells. Sustainable Chemistry and Pharmacy, 22. https://doi.org/10.1016/j.scp.2021.100491
  • 27. Mohammadi, S.Z., Darijani, Z., Karimi, M.A. 2020. Fast and efficient removal of phenol by magnetic activated carbon-cobalt nanoparticles. Journal of Alloys and Compounds, 832. https://doi.org/10.1016/j. jallcom.2020.154942
  • 28. Mohammed, N.A.S., Abu-Zurayk, R.A., Hamadneh, I., Al-Dujaili, A.H. 2018. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. Journal of Environmental Management, 226, 377–385. https://doi.org/10.1016/j.jenvman.2018.08.033
  • 29. Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M., El Hamri, R., Taitai, A. 2015. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. Journal of Saudi Chemical Society, 19(6), 603–615. https://doi.org/10.1016/j.jscs.2012.03.003
  • 30. Nakhjiri, M.T., Bagheri Marandi, G., Kurdtabar, M. 2021a. Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution. Journal of Environmental Chemical Engineering, 9(2). https://doi.org/10.1016/j.jece.2021.105039
  • 31. Nakhjiri, M.T., Bagheri Marandi, G., Kurdtabar, M. 2021b. Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution. Journal of Environmental Chemical Engineering, 9(2). https://doi.org/10.1016/j.jece.2021.105039
  • 32. Norwitz, G., Bardsley, A.H., Keliher, P.N. 1981. Determination of Phenol in the Presence of Sulfite (Sulfur Dioxide) by the 4-Aminoantipyrine spectrophotometric Method. Analytica Chimica Acta, 128(1981), 251–256.
  • 33. Rengaraj, S., Moon, S.-H., Sivabalan, R., Arabindoo, B., Murugesan, V. 2002. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. Journal of Hazardous Materials, 89.
  • 34. Sharafi, K., Pirsaheb, M., Gupta, V. K., Agarwal, S., Moradi, M., Vasseghian, Y., & Dragoi, E. N. (2019). Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks. Journal of Molecular Liquids, 274, 699–714. https://doi.org/10.1016/j.molliq.2018.11.006
  • 35. Tang, W., Huang, H., Gao, Y., Liu, X., Yang, X., Ni, H., Zhang, J. 2015. Preparation of a novel porous adsorption material from coal slag and its adsorption properties of phenol from aqueous solution. Materials and Design, 88, 1191–1200. https://doi.org/10.1016/j.matdes.2015.09.079
  • 36. Tiewcharoen, S., Maihom, T., Sittiwong, J., Limtrakul, J. 2021. The influence of cation exchange and tetravalent metal substitutions in Lewis acidic BEA zeolites for phenol adsorption and Tautomerization: A computational study. Chemical Physics Letters, 780. https://doi.org/10.1016/j.cplett.2021.138886
  • 37. Villar da Gama, B.M., Elisandra do Nascimento, G., Silva Sales, D.C., Rodríguez-Díaz, J.M., Bezerra de Menezes Barbosa, C.M., Menezes Bezerra Duarte, M.M. 2018. Mono and binary component adsorption of phenol and cadmium using adsorbent derived from peanut shells. Journal of Cleaner Production, 201, 219–228. https://doi.org/10.1016/j. jclepro.2018.07.291
  • 38. Wang, T., Xu, Z.Y., Wu, L.G., Li, B.R., Chen, M.X., Xue, S.Y., Zhu, Y.C., Cai, J. 2017. Enhanced photocatalytic activity for degrading phenol in seawater by TiO2-based catalysts under weak light irradiation. RSC Advances, 7(51), 31921–31929. https://doi.org/10.1039/c7ra04732k
  • 39. Wang, X., Hu, Y., Min, J., Li, S., Deng, X., Yuan, S., Zuo, X. 2018. Adsorption characteristics of phenolic compounds on graphene oxide and reduced graphene oxide: A batch experiment combined theory calculation. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101950
  • 40. Wei, X., Gilevska, T., Wetzig, F., Dorer, C., Richnow, H.H., Vogt, C. 2016. Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis. Environmental Pollution, 210, 166– 173. https://doi.org/10.1016/j.envpol.2015.11.005
  • 41. Yon Oepen, B., Kὃrdel, W., Klein, W. 1991. Sorption of Nonpolar and Polar Compounds to Soils: Processes, Measurements and Experience with the Applicability of the Modified OECD-Guideline, 106, 22.
  • 42. Zeboudj, S., Seiad, M. L., Namane, A., Hank, D., Hellal, A. (n.d.). Elimination du phenol : couplage de l’adsorption sur charbon actif et la biodegradation par pseudomonas aeruginosa. Rev. Microbiol. Ind. San et Environn., 8.
  • 43. Zulfiqar, M., Sufian, S., Rabat, N.E., Mansor, N. 2020. Photocatalytic degradation and adsorption of phenol by solvent-controlled TiO2 nanosheets assisted with H2O2 and FeCl3: Kinetic, isotherm and thermodynamic analysis. Journal of Molecular Liquids, 308. https://doi.org/10.1016/j.molliq.2020.112941
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74427a53-390e-4f84-b180-1df093317a0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.