PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Jamming Signal Cancellation by Channel Inversion Power Control for Preserving Covert Communications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Uninformed jammers are used to facilitate covert communications between a transmitter and an intended receiver under the surveillance of a warden. In reality, the signals the uniformed jammer emits to make the warden’s decision uncertain have inadvertently interfered with the detection of the intended receiver. In this paper, we apply truncated channel inversion power control (TCIPC) to both the transmitter and the uninformed jammer. The TCIPC scheme used on the uninformed jammer may help the intended receiver remove jamming signals using the successive interference cancellation (SIC) technique. Under the assumption that the warden knows the channel coefficient between two intended transceivers and achieves the optimal detection power threshold, we form the optimization problem to maximize the effective transmission rate (ETR) under covertness and decoding constraints. With the aim of enhancing covertness-related performance, we achieve the optimal power control parameters and determine system parameter-related constraints required for the existence of these solutions. According to the simulations, the use of the TCIPC scheme on the uninformed jammer significantly improves covertness-related performance in comparison to that of random power control (RPC) and constant power control (CPC) schemes. In addition, simulation results show that, for the TCIPC scheme: 1) the maximum ETR tends to converge as the transmitter’s or the uninformed jammer’s maximum transmit power increases, and 2) there exists an optimal value of the transmitter’s predetermined transmission rate to achieve the optimal performance.
Rocznik
Tom
Strony
22--34
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
  • Department of Telecommunications and Networks, University of Science, VNU-HCM, Ho Chi Minh, Viet Nam
autor
  • Department of Telecommunications and Networks, University of Science, VNU-HCM, Ho Chi Minh, Viet Nam
Bibliografia
  • [1] S. Rich and B. Gellman, ″NSA seeks to build quantum computer that could crack most types of encryption″, The Washington Post, no. 2, 2014 [Online]. Available: http://wapo.st/19DycJT
  • [2] S. Yan, X. Zhou, J. Hu, and S.V. Hanly, ″Low probability of detection communication: Opportunities and challenges″, IEEE Wireless Communications, vol. 26, no. 5, pp. 19–25, 2019 (https://doi.org/10.1109/MWC.001.1900057).
  • [3] B.A. Bash, D. Goeckel, and D. Towsley, ″Limits of reliable communication with low probability of detection on AWGN channels″, IEEE Journal on Selected Areas in Communications, vol. 31, no. 9, pp. 1921–1930, 2013 (https://doi.org/10.1109/JSAC.2013.130 923).
  • [4] P.H. Che, M. Bakshi, and S. Jaggi, ″Reliable deniable communication: Hiding messages in noise″, in 2013 IEEE International Symposium on Information Theory, 2013, pp. 2945–2949 (https://doi.org/10.1109/ISIT.2013.6620765).
  • [5] M.R. Bloch, ″Covert communication over noisy channels: A resolvability perspective″, IEEE Transactions on Information Theory, vol. 62, no. 5, pp. 2334–2354, 2016 (https://doi.org/10.1109/TIT. 2016.2530089).
  • [6] A. Abdelaziz and C.E. Koksal, ″Fundamental limits of covert communication over MIMO AWGN channel″, in 2017 IEEE Conference on Communications and Network Security (CNS), 2017, pp. 1–9 (https://doi.org/10.1109/CNS.2017.8228657).
  • [7] T.X. Zheng et al., ″Wireless covert communications aided by distributed cooperative jamming over slow fading channels″, IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7026–7039, 2021 (https://doi.org/10.1109/TWC.2021.3080382).
  • [8] Y. Jiang, L. Wang, and H.H. Chen, ″Covert communications in D2D underlaying cellular networks with antenna array assisted artificial noise transmission″, IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 2980–2992, 2020 (https://doi.org/10.1109/TVT.2020.2966538).
  • [9] J. Hu, S. Yan, X. Zhou, F. Shu, and J. Li, ″Covert wireless communications with channel inversion power control in Rayleigh fading″, IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12135–12149, 2019 (https://doi.org/10.1109/TVT.2019 .2949304).
  • [10] B. He, S. Yan, X. Zhou, and H. Jafarkhani, ″Covert wireless communication with a Poisson field of interferers″, IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp. 6005–6017, 2018 (https://doi.org/10.1109/TWC.2018.2854540).
  • [11] A. Sheikholeslami et al., ″Multi-hop routing in covert wireless networks″, IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 3656–3669, 2018 (htpps://doi.org/10.1109/TWC.20 18.2812881).
  • [12] M. Forouzesh, P. Azmi, A. Kuhestani, and P.L. Yeoh, ″Covert communication and secure transmission over untrusted relaying networks in the presence of multiple wardens″, IEEE Transactions on Communications, vol. 68, no. 6, pp. 3737–3749, 2020 (https://doi.org/10.1109/TCOMM.2020.2978206).
  • [13] R. Zhang et al., ″UAV relay assisted cooperative jamming for covert communications over Rician fading″, IEEE Transactions on Vehicular Technology, vol. 71, no. 7, pp. 7936–7941, 2022 (htpps://doi.org/10.1109/TVT.2022.3164051).
  • [14] H.M. Wang, Y. Zhang, X. Zhang, and Z. Li, ″Secrecy and covert communications against UAV surveillance via multi-hop networks″, IEEE Transactions on Communications, vol. 68, no. 1, pp. 389–401, 2020 (htpps://doi.org/10.1109/TCOMM.2019.2950940).
  • [15] T.V. Sobers, B.A. Bash, S. Guha, D. Towsley, and D. Goeckel, ″Covert communication in the presence of an uninformed jammer″, IEEE Transactions on Wireless Communications, vol. 16, no. 9, pp. 6193–6206, 2017 (htpps://doi.org/10.1109/TWC.2017.2 720736).
  • [16] K. Li, T.V. Sobers, D. Towsley, and D. Goeckel, ″Covert communication in continuous-time systems in the presence of a jammer″, IEEE Transactions on Wireless Communications, vol. 21, no. 7, pp. 4883–4897, 2022 (htpps://doi.org/10.1109/TWC.2021.3 134179).
  • [17] K. Li, P.A. Kelly, and D. Goeckel, ″Optimal power adaptation in covert communication with an uninformed jammer″, IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3463–3473, 2020 (htpps://doi.org/10.1109/TWC.2020.2973975).
  • [18] K. Shahzad, ″Relaying via cooperative jamming in covert wireless communications″, in 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), 2018, pp. 1–6 (htpps://doi.org/10.1109/ICSPCS.2018.8631772).
  • [19] H. ZivariFard, M.R. Bloch, and A. Nosratinia, ″Covert communication in the presence of an uninformed, informed, and coordinated jammer″, in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 306–311 (htpps://doi.org/10.1109/ISIT50566.20 22.9834682).
  • [20] W. Xiong, Y. Yao, X. Fu, and S. Li, ″Covert communication with cognitive jammer″, IEEE Wireless Communications Letters, vol. 9, no. 10, pp. 1753–1757, 2020 (htpps://doi.org/10.1109/LWC. 2020.3003472).
  • [21] X. He, H. Dai, W. Shen, P. Ning, and R. Dutta, ″Toward proper guard zones for link signature″, IEEE Transactions on Wireless Communications, vol. 15, no. 3, pp. 2104–2117, 2016 (htpps://doi.org/10.1109/TWC.2015.2498621).
  • [22] C. Zenger, H. Vogt, J. Zimmer, A. Sezgin, and C. Paar, ″The passive eavesdropper affects my channel: Secret-key rates under real-world conditions″, in 2016 IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1–6 (htpps://doi.org/10.1109/GLOCOMW.2016.7849064).
  • [23] Z. Xiang et al., ″‘Secure transmission in HARQ-assisted nonorthogonal multiple access networks″, IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2171–2182, 2020 (htpps://doi.org/10.1109/TIFS.2019.2955792).
  • [24] M. Forouzesh, P. Azmi, N. Mokari, and D. Goeckel, ″Robust power allocation in covert communication: Imperfect CDI″, IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5789–5802, 2021 (htpps://doi.org/10.1109/TVT.2021.3076709).
  • [25] L. Tao et al., ″Covert communication in downlink NOMA systems with random transmit power″, IEEE Wireless Communications Letters, vol. 9, no. 11, pp. 2000–2004, 2020 (htpps://doi.org/10.1109/LWC.2020.3011191).
  • [26] K. Higuchi and A. Benjebbour, ″Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access″, IEICE Transactions on Communications, vol. E98.B, no. 3, pp. 403–414, 2015 (htpps://doi.org/doi.org/10.1587/tran scom.E98.B.403).
  • [27] D. Zwillinger and A. Jeffrey, Table of Integrals, Series, and Products, 7th ed. Elsevier, 1200 p., 2007 (ISBN 9780123736376).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74420d91-4b3e-46de-9de3-fb7daee425d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.