Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Inclined jet air cooling can be effectively used for cooling of electronics or other such applications. The non-confined air jet is impinged and experimentally investigated on the hot target surface to be cooled, which is placed horizontally. Analysis and evaluations are made by introduction of a jet on the leading edge and investigated for downhill side cooling to identify cold spots. The jet Reynolds number in the range of 2000 ≤ Re ≤ 20 000 is examined with a circular jet for inclination (θ) of 15 less than θ less than 75 degree. Also, the consequence of a jet to target distance (H) is explored in the range 0.5 ≤ H/D ≤ 6.8. For 45 degree jet impingement, the maximum Nusselt number is widely spread. Location of maximum Nusselt number is studied, which indicates cold spots identification. At a higher angle ratio, the angle is the dominating parameter compared to the Reynolds Number. Whereas at a lower angle ratio, the inclined jet with a higher Reynolds number is giving the cooling point away from leading edge. It is observed that for a particular angle of incident location of maximum Nusselt Number, measured from leading edge of target, is ahead than that of stagnation point in stated conditions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
533--549
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Dr. D. Y. Patil College of Engineering and Innovation, Savitribai Phule Pune University, Pune, India
autor
- Savitribai Phule Pune University, Pune, India
Bibliografia
- [1] C.J.M. Lasance. Advances in high-performance cooling for electronics. Electronics Cooling, Nov. 1, 2006. https://www.electronics-cooling.com/2005/11/advances-in-high-performance-cooling-for-electronics/.
- [2] H. Metwally. Methods of evaluating advanced electronics colling systems. online: www.ansys.com, 2008.
- [3] A. Bhattacharya and R.L. Mahajan. Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection. ASME. Journal of Electronic Packaging, 128(3):259–266, 2006. doi: 10.1115/1.2229225.
- [4] S. Sathe and B. Sammakia. A review of recent developments in some practical aspects of air-cooled electronic packages. ASME. Journal of Heat Transfer, 120(4):830–839, 1998. doi: 10.1115/1.2825902.
- [5] R.C. Chu. The challenges of electronic cooling: past, current and future. ASME. Journal of Electronic Packaging, 126(4):491–500, 2004. doi: 10.1115/1.1839594.
- [6] J.-M. Koo, S. Im, L. Jiang, and K.E. Goodson. Integrated microchannel cooling for three-dimensional electronic circuit architectures. ASME. Journal of Heat Transfer, 127(1):49–58, 2005. doi: 10.1115/1.1839582.
- [7] R. Dharmalingam, K.K. Sivagnanaprabhu, J. Yogaraja, S. Gunasekaran, and R. Mohan. Experimental investigation of heat transfer characteristics of nanofluid using parallel flow, counter flow and shell and tube heat exchanger. Archive of Mechanical Engineering, 62(4):509–522, 2015. doi: 10.1515/meceng-2015-0028.
- [8] S.S. Anandan and V. Ramalingam. Thermal management of electronics: A review of literature. Thermal Science, 12(2):5–26, 2008. doi: 10.2298/TSCI0802005A.
- [9] M.-Y. Wen. Flow structures and heat transfer of swirling jet impinging on a flat surface with micro-vibrations. International Journal of Heat and Mass Transfer, 48(3):545–560, 2005. doi: 10.1016/j.ijheatmasstransfer.2004.09.010.
- [10] P.A. Dellenback, J.L. Sanger, and D.E. Metzger. Heat transfer in coaxial jet mixing with swirled inner jet. ASME. Journal of Heat Transfer, 116(4):864–870, 1994. doi: 10.1115/1.2911460.
- [11] S.K. Hong, D.H. Lee, and H.H. Cho. Heat/mass transfer measurement on concave surface in rotating jet impingement. Journal of Mechanical Science and Technology, 22(10):1952–1958, 2008. doi: 10.1007/s12206-008-0738-5.
- [12] J.S. Bintoro, A. Akbarzadeh, and M. Mochizuki. A closed-loop electronics cooling by implementing single phase impinging jet and mini channels heat exchanger. Applied Thermal Engineering, 25(17):2740–2753, 2005. doi: 10.1016/j.applthermaleng.2005.01.018.
- [13] B.P. Whelan, R. Kempers, and A.J. Robinson. A liquid-based system for CPU cooling implementing a jet array impingement waterblock and a tube array remote heat exchanger. Applied Thermal Engineering, 39:86–94, 2012. doi: 10.1016/j.applthermaleng.2012.01.013.
- [14] C. Glynn, T. O’Donovan, and D.B. Murray. Jet impingement cooling. In Proceedings of the 9th UK National Heat Transfer Conference, Manchester, 2005.
- [15] K.M. Graham and S. Ramadhyani. Experimental and theoretical studies of mist jet impingement cooling. ASME. Journal of Heat Transfer, 118(2):343–349, 1996. doi: 10.1115/1.2825850.
- [16] J. Garg, M. Arik, S. Weaver, T. Wetzel, and S. Saddoughi. Meso scale pulsating jets for electronics cooling. ASME. Journal of Electronic Packaging, 127(4):503–511, 2005. doi: 10.1115/1.2065727.
- [17] Y. Utturkar, M. Arik, C.E. Seeley, and M. Gursoy. An experimental and computational heat transfer study of pulsating jets. ASME. Journal of Heat Transfer, 130(6):062201, 2008. doi: 10.1115/1.2891158.
- [18] S.C. Arjocu and J.A. Liburdy. Identification of dominant heat transfer modes associated with the impingement of an elliptical jet array. ASME. Journal of Heat Transfer, 122(2):240–247, 2000. doi: 10.1115/1.521463.
- [19] B.P.E. Dano, J.A. Liburdy, and K. Kanokjaruvijit. Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry. International Journal of Heat and Mass Transfer, 48(3):691–701, 2005. doi: 10.1016/j.ijheatmasstransfer.2004.07.046.
- [20] B.P. Whelan and A.J. Robinson. Nozzle geometry effects in liquid jet array impingement. Applied Thermal Engineering, 29(11):2211–2221, 2009. doi: 10.1016/j.applthermaleng.2008.11.003.
- [21] A. Pavlova and M. Amitay. Electronic cooling using synthetic jet impingement. ASME. Journal of Heat Transfer, 128(9):897–907, 2006. doi: 10.1115/1.2241889.
- [22] H.S. Sheriff and D.A. Zumbrunnen. Effect of flow pulsations on the cooling effectiveness of an impinging jet. ASME. Journal of Heat Transfer, 116(4):886–895, 1994. doi: 10.1115/1.2911463.
- [23] L.A. Brignoni and S.V. Garimella. Experimental optimization of confined air jet impingement on a pin fin heat sink. IEEE Transactions on Components and Packaging Technologies, 22(3):399–404, 1999. doi: 10.1109/6144.796542.
- [24] D.H. Lee, Y.S. Chung, and P.M. Ligrani. Jet impingement cooling of chips equipped with multiple cylindrical pedestal fins. ASME. Journal of Electronic Packaging, 129(3):221–228, 2007. doi: 10.1115/1.2753884.
- [25] H. Eren and N. Celik. Cooling of a heated flat plate by an obliquely impinging slot jet. International Communications in Heat and Mass Transfer, 33(3):372–380, 2006. doi: 10.1016/j.icheatmasstransfer.2005.10.009.
- [26] M. Fabbri, S. Jiang, and V.K. Dhir. A comparative study of cooling of high power density electronics using sprays and microjets. ASME. Journal of Heat Transfer, 127(1):38–48, 2005. doi: 10.1115/1.1804205.
- [27] K. Choo, T.Y. Kang, and S.J. Kim. The effect of inclination on impinging jets at small nozzle-to-plate spacing. International Journal of Heat and Mass Transfer, 55(13):3327–3334, 2012. doi: 10.1016/j.ijheatmasstransfer.2012.02.062.
- [28] K. Nakabe, E. Fornalik, J.F. Eschenbacher, Y. Yamamoto, T. Ohta, and K. Suzuki. Interactions of longitudinal vortices generated by twin inclined jets and enhancement of impingement heat transfer. International Journal of Heat and Fluid Flow, 22(3):287–292, 2001. doi: 10.1016/S0142-727X(01)00090-X.
- [29] Y.-T. Yang and Y.-X. Wang. Three-dimensional numerical simulation of an inclined jet with cross-flow. International Journal of Jeat and Mass Transfer, 48(19):4019–4027, 2005. doi: 10.1016/j.ijheatmasstransfer.2005.04.018.
- [30] B.Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian. Spray angle effect during spray cooling of microelectronics: experimental measurements and comparison with inverse calculations. Applied Thermal Engineering, 26(16):1788–1795, 2006. doi: 10.1016/j.applthermaleng.2006.01.023.
- [31] C. Bartoli. Free convection enhancement between inclined wall and air in presence of expired jets at temperature difference of 40 K. Experimental Thermal and Fluid Science, 35(2):283–290, 2011. doi: 10.1016/j.expthermflusci.2010.09.010.
- [32] D. Benmouhoub and A. Mataoui. Inclined plane jet impinging a moving heated wall. Fluid Dynamics & Materials Processing, 10(2):241–260, 2014. doi: 10.3970/fdmp.2014.010.241.
- [33] A.Y. Tong. On the impingement heat transfer of an oblique free surface plane jet. International Journal of Heat and Mass Transfer, 46(11):2077–2085, 2003. doi: 10.1016/S0017-9310(02)00505-7.
- [34] S. Ingole and K. Sundaram. Review of experimental investigation in heat transfer for jet impingement cooling. International Review of Mechanical Engineering, 6(3):346–356, 2012.
- [35] S.H. Yoon, M.K. Kim, and D.H. Lee. Turbulent flow and heat transfer characteristics of a two-dimensional oblique plate impinging jet. KSME International Journal, 11(4):476–483, 1997. doi: 10.1007/BF02945086.
- [36] S.B. Ingole and K.K. Sundaram. Experimental average Nusselt number characteristics with inclined non-confined jet impingement of air for cooling application. Experimental Thermal and Fluid Science, 77:124–131, 2016. doi: 10.1016/j.expthermflusci.2016.04.016.
- [37] S.B. Ingole and K.K. Sundaram. Heat transfer enhancement factor characteristics for collective cooling using inclined air jet. In IEEE 17th Electronics Packaging and Technology Conference (EPTC), pages 1–6, Singapore, 2-4 Dec. 2015. IEEE. doi: 10.1109/EPTC.2015.7412395.
- [38] A. Ianiro and G. Cardone. Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49:89–98, 2012. doi: 10.1016/j.applthermaleng.2011.10.018.
- [39] C.F. Ma, Q. Zheng, H. Sun, K.Wu, T. Gomi, and B.W.Webb. Local characteristics of impingement heat transfer with oblique round free-surface jets of large Prandtl number liquid. International Journal of Heat and Mass Transfer, 40(10):2249–2259, 1997. doi: 10.1016/S0017-9310(96)00310-9.
- [40] N. Zuckerman and N. Lior. Jet impingement heat transfer: physics, correlations, and numerical modeling. Advances in Heat Transfer, 39:565–631, 2006. doi: 10.1016/S0065-2717(06)39006-5.
- [41] A. Ramezanpour, H. Shirvani, and I. Mirzaee. A numerical study on the heat transfer characteristics of two-dimensional inclined impinging jet. In 5th Electronics Packaging Technology Conference (EPTC), pages 626–632, Singapore, 12 Dec. 2003. IEEE. doi: 10.1109/EPTC.2003.1271594.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7440e8dc-9a09-4e76-8ebf-570183e9a470