PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cold Zone Exploration Using Position of Maximum Nusselt Number for Inclined Air Jet Cooling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inclined jet air cooling can be effectively used for cooling of electronics or other such applications. The non-confined air jet is impinged and experimentally investigated on the hot target surface to be cooled, which is placed horizontally. Analysis and evaluations are made by introduction of a jet on the leading edge and investigated for downhill side cooling to identify cold spots. The jet Reynolds number in the range of 2000 ≤ Re ≤ 20 000 is examined with a circular jet for inclination (θ) of 15 less than θ less than 75 degree. Also, the consequence of a jet to target distance (H) is explored in the range 0.5 ≤ H/D ≤ 6.8. For 45 degree jet impingement, the maximum Nusselt number is widely spread. Location of maximum Nusselt number is studied, which indicates cold spots identification. At a higher angle ratio, the angle is the dominating parameter compared to the Reynolds Number. Whereas at a lower angle ratio, the inclined jet with a higher Reynolds number is giving the cooling point away from leading edge. It is observed that for a particular angle of incident location of maximum Nusselt Number, measured from leading edge of target, is ahead than that of stagnation point in stated conditions.
Rocznik
Strony
533--549
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • Dr. D. Y. Patil College of Engineering and Innovation, Savitribai Phule Pune University, Pune, India
  • Savitribai Phule Pune University, Pune, India
Bibliografia
  • [1] C.J.M. Lasance. Advances in high-performance cooling for electronics. Electronics Cooling, Nov. 1, 2006. https://www.electronics-cooling.com/2005/11/advances-in-high-performance-cooling-for-electronics/.
  • [2] H. Metwally. Methods of evaluating advanced electronics colling systems. online: www.ansys.com, 2008.
  • [3] A. Bhattacharya and R.L. Mahajan. Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection. ASME. Journal of Electronic Packaging, 128(3):259–266, 2006. doi: 10.1115/1.2229225.
  • [4] S. Sathe and B. Sammakia. A review of recent developments in some practical aspects of air-cooled electronic packages. ASME. Journal of Heat Transfer, 120(4):830–839, 1998. doi: 10.1115/1.2825902.
  • [5] R.C. Chu. The challenges of electronic cooling: past, current and future. ASME. Journal of Electronic Packaging, 126(4):491–500, 2004. doi: 10.1115/1.1839594.
  • [6] J.-M. Koo, S. Im, L. Jiang, and K.E. Goodson. Integrated microchannel cooling for three-dimensional electronic circuit architectures. ASME. Journal of Heat Transfer, 127(1):49–58, 2005. doi: 10.1115/1.1839582.
  • [7] R. Dharmalingam, K.K. Sivagnanaprabhu, J. Yogaraja, S. Gunasekaran, and R. Mohan. Experimental investigation of heat transfer characteristics of nanofluid using parallel flow, counter flow and shell and tube heat exchanger. Archive of Mechanical Engineering, 62(4):509–522, 2015. doi: 10.1515/meceng-2015-0028.
  • [8] S.S. Anandan and V. Ramalingam. Thermal management of electronics: A review of literature. Thermal Science, 12(2):5–26, 2008. doi: 10.2298/TSCI0802005A.
  • [9] M.-Y. Wen. Flow structures and heat transfer of swirling jet impinging on a flat surface with micro-vibrations. International Journal of Heat and Mass Transfer, 48(3):545–560, 2005. doi: 10.1016/j.ijheatmasstransfer.2004.09.010.
  • [10] P.A. Dellenback, J.L. Sanger, and D.E. Metzger. Heat transfer in coaxial jet mixing with swirled inner jet. ASME. Journal of Heat Transfer, 116(4):864–870, 1994. doi: 10.1115/1.2911460.
  • [11] S.K. Hong, D.H. Lee, and H.H. Cho. Heat/mass transfer measurement on concave surface in rotating jet impingement. Journal of Mechanical Science and Technology, 22(10):1952–1958, 2008. doi: 10.1007/s12206-008-0738-5.
  • [12] J.S. Bintoro, A. Akbarzadeh, and M. Mochizuki. A closed-loop electronics cooling by implementing single phase impinging jet and mini channels heat exchanger. Applied Thermal Engineering, 25(17):2740–2753, 2005. doi: 10.1016/j.applthermaleng.2005.01.018.
  • [13] B.P. Whelan, R. Kempers, and A.J. Robinson. A liquid-based system for CPU cooling implementing a jet array impingement waterblock and a tube array remote heat exchanger. Applied Thermal Engineering, 39:86–94, 2012. doi: 10.1016/j.applthermaleng.2012.01.013.
  • [14] C. Glynn, T. O’Donovan, and D.B. Murray. Jet impingement cooling. In Proceedings of the 9th UK National Heat Transfer Conference, Manchester, 2005.
  • [15] K.M. Graham and S. Ramadhyani. Experimental and theoretical studies of mist jet impingement cooling. ASME. Journal of Heat Transfer, 118(2):343–349, 1996. doi: 10.1115/1.2825850.
  • [16] J. Garg, M. Arik, S. Weaver, T. Wetzel, and S. Saddoughi. Meso scale pulsating jets for electronics cooling. ASME. Journal of Electronic Packaging, 127(4):503–511, 2005. doi: 10.1115/1.2065727.
  • [17] Y. Utturkar, M. Arik, C.E. Seeley, and M. Gursoy. An experimental and computational heat transfer study of pulsating jets. ASME. Journal of Heat Transfer, 130(6):062201, 2008. doi: 10.1115/1.2891158.
  • [18] S.C. Arjocu and J.A. Liburdy. Identification of dominant heat transfer modes associated with the impingement of an elliptical jet array. ASME. Journal of Heat Transfer, 122(2):240–247, 2000. doi: 10.1115/1.521463.
  • [19] B.P.E. Dano, J.A. Liburdy, and K. Kanokjaruvijit. Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry. International Journal of Heat and Mass Transfer, 48(3):691–701, 2005. doi: 10.1016/j.ijheatmasstransfer.2004.07.046.
  • [20] B.P. Whelan and A.J. Robinson. Nozzle geometry effects in liquid jet array impingement. Applied Thermal Engineering, 29(11):2211–2221, 2009. doi: 10.1016/j.applthermaleng.2008.11.003.
  • [21] A. Pavlova and M. Amitay. Electronic cooling using synthetic jet impingement. ASME. Journal of Heat Transfer, 128(9):897–907, 2006. doi: 10.1115/1.2241889.
  • [22] H.S. Sheriff and D.A. Zumbrunnen. Effect of flow pulsations on the cooling effectiveness of an impinging jet. ASME. Journal of Heat Transfer, 116(4):886–895, 1994. doi: 10.1115/1.2911463.
  • [23] L.A. Brignoni and S.V. Garimella. Experimental optimization of confined air jet impingement on a pin fin heat sink. IEEE Transactions on Components and Packaging Technologies, 22(3):399–404, 1999. doi: 10.1109/6144.796542.
  • [24] D.H. Lee, Y.S. Chung, and P.M. Ligrani. Jet impingement cooling of chips equipped with multiple cylindrical pedestal fins. ASME. Journal of Electronic Packaging, 129(3):221–228, 2007. doi: 10.1115/1.2753884.
  • [25] H. Eren and N. Celik. Cooling of a heated flat plate by an obliquely impinging slot jet. International Communications in Heat and Mass Transfer, 33(3):372–380, 2006. doi: 10.1016/j.icheatmasstransfer.2005.10.009.
  • [26] M. Fabbri, S. Jiang, and V.K. Dhir. A comparative study of cooling of high power density electronics using sprays and microjets. ASME. Journal of Heat Transfer, 127(1):38–48, 2005. doi: 10.1115/1.1804205.
  • [27] K. Choo, T.Y. Kang, and S.J. Kim. The effect of inclination on impinging jets at small nozzle-to-plate spacing. International Journal of Heat and Mass Transfer, 55(13):3327–3334, 2012. doi: 10.1016/j.ijheatmasstransfer.2012.02.062.
  • [28] K. Nakabe, E. Fornalik, J.F. Eschenbacher, Y. Yamamoto, T. Ohta, and K. Suzuki. Interactions of longitudinal vortices generated by twin inclined jets and enhancement of impingement heat transfer. International Journal of Heat and Fluid Flow, 22(3):287–292, 2001. doi: 10.1016/S0142-727X(01)00090-X.
  • [29] Y.-T. Yang and Y.-X. Wang. Three-dimensional numerical simulation of an inclined jet with cross-flow. International Journal of Jeat and Mass Transfer, 48(19):4019–4027, 2005. doi: 10.1016/j.ijheatmasstransfer.2005.04.018.
  • [30] B.Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian. Spray angle effect during spray cooling of microelectronics: experimental measurements and comparison with inverse calculations. Applied Thermal Engineering, 26(16):1788–1795, 2006. doi: 10.1016/j.applthermaleng.2006.01.023.
  • [31] C. Bartoli. Free convection enhancement between inclined wall and air in presence of expired jets at temperature difference of 40 K. Experimental Thermal and Fluid Science, 35(2):283–290, 2011. doi: 10.1016/j.expthermflusci.2010.09.010.
  • [32] D. Benmouhoub and A. Mataoui. Inclined plane jet impinging a moving heated wall. Fluid Dynamics & Materials Processing, 10(2):241–260, 2014. doi: 10.3970/fdmp.2014.010.241.
  • [33] A.Y. Tong. On the impingement heat transfer of an oblique free surface plane jet. International Journal of Heat and Mass Transfer, 46(11):2077–2085, 2003. doi: 10.1016/S0017-9310(02)00505-7.
  • [34] S. Ingole and K. Sundaram. Review of experimental investigation in heat transfer for jet impingement cooling. International Review of Mechanical Engineering, 6(3):346–356, 2012.
  • [35] S.H. Yoon, M.K. Kim, and D.H. Lee. Turbulent flow and heat transfer characteristics of a two-dimensional oblique plate impinging jet. KSME International Journal, 11(4):476–483, 1997. doi: 10.1007/BF02945086.
  • [36] S.B. Ingole and K.K. Sundaram. Experimental average Nusselt number characteristics with inclined non-confined jet impingement of air for cooling application. Experimental Thermal and Fluid Science, 77:124–131, 2016. doi: 10.1016/j.expthermflusci.2016.04.016.
  • [37] S.B. Ingole and K.K. Sundaram. Heat transfer enhancement factor characteristics for collective cooling using inclined air jet. In IEEE 17th Electronics Packaging and Technology Conference (EPTC), pages 1–6, Singapore, 2-4 Dec. 2015. IEEE. doi: 10.1109/EPTC.2015.7412395.
  • [38] A. Ianiro and G. Cardone. Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49:89–98, 2012. doi: 10.1016/j.applthermaleng.2011.10.018.
  • [39] C.F. Ma, Q. Zheng, H. Sun, K.Wu, T. Gomi, and B.W.Webb. Local characteristics of impingement heat transfer with oblique round free-surface jets of large Prandtl number liquid. International Journal of Heat and Mass Transfer, 40(10):2249–2259, 1997. doi: 10.1016/S0017-9310(96)00310-9.
  • [40] N. Zuckerman and N. Lior. Jet impingement heat transfer: physics, correlations, and numerical modeling. Advances in Heat Transfer, 39:565–631, 2006. doi: 10.1016/S0065-2717(06)39006-5.
  • [41] A. Ramezanpour, H. Shirvani, and I. Mirzaee. A numerical study on the heat transfer characteristics of two-dimensional inclined impinging jet. In 5th Electronics Packaging Technology Conference (EPTC), pages 626–632, Singapore, 12 Dec. 2003. IEEE. doi: 10.1109/EPTC.2003.1271594.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7440e8dc-9a09-4e76-8ebf-570183e9a470
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.