PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contemporary applications of magnetoreological fluids for finishing process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the current state of knowledge on the use of magnetorheological fluids for finishing processes. The paper descsribes the type of the materials and surfaces to be machined and the composition of the magnetorheological fluids used in this area. The most interesting applications were described in more detail, paying particular attention to the schematic diagram of the test stands, obtained results of experimental tests and the results of roughness measurements of the surfaces exposed to magnetically controlled fluids. The article also describes the directions of the newest experimental and simulation research on the application of magnetorheological fluids in the field.
Rocznik
Strony
141--152
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Unconventional HydroJetting Technology Center, Raclawicka 15-17, 75-620, Koszalin, Poland
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering
Bibliografia
  • 1. Bajkowski J. (2012) Ciecze i tłumiki magnetoreologiczne. Właściwości, budowa, badania, modelowanie i zastosowanie. Wyd. Komunikacji i Łączności, Warszawa.
  • 2. Milecki A. (2010) Ciecze elektro-i magnetoreologiczne oraz ich zastosowania w technice. Wydawnictwo Politechniki Poznańskiej, Poznań.
  • 3. Shorey A.B., Jacobs S.D., Kordonski W.I., Gans R.F. (2001) Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing. Applied Optics, Vol. 40, pp. 20-33.
  • 4. Bik T. (2015) Magnetically controllable fluids in the nanotechnological aspect. Mechanik, Vol. 11, pp. 845-849.
  • 5. Rymarz C. (1993) Mechanika ośrodków ciągłych. Wydawnictwo Naukowe PWN, Warszawa.
  • 6. Dragoni E. (2009) Materiali meccatronici. Progettare 332, pp. 77-81. Available on-line: http://meccanica-plus.it/wp-content/uploads/sites/4/2009/06/20090401040_11.pdf
  • 7. Spaggiari A. (2013) Properties and applications of magnetorheological fluids. Frattura ed Integrità Strutturale, Vol. 23, pp. 57-61
  • 8. Jolly M. R., Bender J. W., Carlson J. D. (1999) Properties and applications of commercial magnetorheological fluids. J. Intell. Mater. Syst. Struct., Vol. 10, pp. 5-13.
  • 9. Sidpara A. and Jain V.K .(2012) Theoretical analysis of forces in magnetorheological fluid based finishing process. Int J Mech Sci, Vol. 56, pp. 50-59.
  • 10. Rabinow J. (1948) The magnetic fluid clutch. Trans. AIEE, Vol. 67, pp. 1308-1315.
  • 11. Kciuk M., Turczyn R., Kciuk S., Mężyk A. (2014) Ciecz magnetoreologiczna. Polish Patent No. PL217540.
  • 12. Shafer A.S., Kermani M.R. (2011) On the feasibility and suitability of MR fluid clutches in human-friendly manipulators. IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 6, pp. 1073-1082.
  • 13. Sarkar Ch., and Hirani H. (2013) Synthesis and characterization of antifriction magnetorheological fluids for brake. Defence Science Journal, Vol. 63, No. 4, pp. 408-412.
  • 14. Shinmura T., Takazawa K., Hatano E. et al. (1990) Study on magnetic abrasive finishing. CIRP Ann. Manuf. Technol., Vol. 39, No. 1, pp. 325-328.
  • 15. Golini D., Kordonski W.I., Dumas P. et al. (1999) Magnetorheological finishing (MRF) in commercial precision optics manufacturing. Proc. SPIE, Vol. 3782, pp. 80-91.
  • 16. Kordonski W.I., Shorey A.B., Tricard M. (2006) Magnetorheological jet (MR JetTM) finishing technology. Trans. ASME J. Fluids Eng., Vol. 128, pp. 20-26.
  • 17. Das M., Jain V.K., Ghoshdastidar P.S. (2008) Analysis of magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Techno, Vol. 38, No. 5, pp. 613-621.
  • 18. Das M., Jain V.K., Ghoshdastidar P.S. (2011) Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process. Int. J. Adv. Manuf. Technol., Vol. 62, pp. 405-420.
  • 19. Niranjan M., Jha S., Kotnala R.K. (2013) Mechanism of material removal in ball end magnetorheological finishing process. Wear, Vol. 302, No. 1-2, pp. 1180-1191.
  • 20. Wojtewicz M. (2017) Original methods of ceramic grinding wheels impregnation. Journal of Mechanical and Energy Engineering, Vol. 1(41), No. 1, pp. 45-50.
  • 21. Nadolny K., Sienicki W, Wojtewicz M. (2015) The effect upon the grinding wheel active surface condition when impregnating with non-metallic elements during internal cylindrical grinding of titanium. Archives of Civil and Mechanical Engineering, Vol. 15, No. 1, pp. 71-86.
  • 22. Nadolny K., Plichta J., Sutowski P. (2014) Regeneration of grinding wheel active surface using high-pressure hydro-jet. Journal of Central South University, Vol. 21, No. 8, pp. 3107-3118.
  • 23. Kieraś S., Nadolny K. (2017) Overview of the centrifugal methods of provision the grinding fluid to the grinding zone. Journal of Mechanical and Energy Engineering, Vol. 1(41), No. 1, pp. 7-14.
  • 24. Sutowski P, Sutowska M., Kapłonek W. (2017) The use of high-frequency acoustic emission analysis for in-process assessment of the surface quality of aluminium alloy 5251 in abrasive waterjet machining. Proc. Inst. Mech. Eng. B. doi:10.11 77/0954405417703428
  • 25. Wang J., Chen W., Han F. (2015) Study on the magnetorheological finishing method for the WEDMed pierced die cavity. Int J Adv Manuf Technol, Vol. 76, pp. 1969-1975.
  • 26. Niranjan M.S. and Jha S. (2015) Experimental investigation into tool aging effect in ball end magnetorheological finishing. Int J Adv Manuf Technol, Vol. 80, pp. 1895-1902.
  • 27. Chen S., Li S., Hu H. et al. (2015) Analysis of surface quality and processing optimization of magnetorheological polishing of KDP crystal. J Opt Vol. 44, No. 4, pp. 384-390.
  • 28. Pan J., Yan Q. (2015) Material removal mechanism of cluster magnetorheological effect in plane polishing. Int J Adv Manuf Technol, Vol. 81, pp. 2017-2026.
  • 29. Das M., Jain V. K., Ghoshdastidar P. S. (2015) A 2D CFD simulation of MR polishing medium in magnetic field-assisted finishing process using electromagnet. Int J Adv Manuf Technol, Vol. 76, pp. 173-187.
  • 30. Ji F., Xu M., Wang Ch. et al. (2016) The magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystal with Fe3O4 nanoparticles. Nanoscale Research Letters, Vol. 11, No 79. doi:10.1186/s11671-016-1301-4
  • 31. Wang Y., Zhang Y., Feng Z. (2016) Analyzing and improving surface texture by dual-rotation magnetorheological finishing. Appl Surf Sci, Vol. 360, pp. 224-233.
  • 32. Liu H., Chen M., Yu B., Fang Z.(2016) Configuration design and accuracy analysis of a novel magneto-rheological finishing machine tool for concave surfaces with small radius of curvature. J Mech Sci Technol, Vol. 30, No. 7, pp. 3301-3311.
  • 33. Kim W-B., Nam E., Min B-K. et al. (2016) Material removal of glass by magnetorheological fluid jet. Int J Precis Eng Man, Vol. 16, No. 4, pp. 629-637.
  • 34. Chen M., Liu H., Su Y., Yu B., Fang Z. (2016) Design and fabrication of a novel magnetorheological finishing process for small concave surfaces using small ball-end permanent-magnet polishing head. Int J Adv Manuf Technol, Vol. 83, pp. 823-834.
  • 35. Alam Z., Jha S. (2017) Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process. Wear, Vol. 374-375, pp. 54-62
  • 36. Singh A.K., Jha S., Pandey P.M. (2011) Design and development of nanofinishing process for 3D surfaces using ball end MR finishing tool. Int. J. Mach. Tools Manuf., Vol. 51, No. 2, pp. 142-151.
  • 37. Singh A.K., Jha S., Pandey P.M. (2012) Magnetorheological ball end finishing process. Mater. Manuf. Process., Vol. 27, No. 4, pp. 389-394.
  • 38. Peng X., Yang C., Hu H. at al. (2017) Measurement and algorithm for localization of aspheric lens in magnetorheological finishing. Int J Adv Manuf Technol, Vol.88, No. 9-12, pp. 2889-2897.
  • 39. Grover V., Singh A.K. (2017) Analysis of particles in magnetorheological polishing fluid for finishing of ferromagnetic cylindrical workpiece. Particulate Science And Technology. doi:10.1080/02726351.2017.1302535
  • 40. Barman A., Das M. (2017) Simulation of magnetic field assisted finishing (MFAF) process utilizing smart MR polishing tool. J. Inst. Eng. India Ser. C, Vol. 98, No. 1, pp. 75-82.
  • 41. Ranjan P., Balasubramaniam R., Jain V.K. (2017) Analysis of magnetorheological fluid behavior in chemo-mechanical magnetorheological finishing (CMMRF) process. Precis Eng, Vol. 49, pp. 122-135.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-744029e1-d8ed-4045-9e22-a1babd9c8a08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.