PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of spiral vanes width on the separation performance of a hydrocyclone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aiming at the problem of “entrainment fine particles in underflow” of hydrocyclone in grinding and classification process, a hydrocyclone with spiral vanes (the SV hydrocyclone) was proposed. The CFD techniques were used to study the pressure field, velocity field, turbulence field, particle field and classification efficiency of hydrocyclones with spiral vanes of different widths. The results show that the pressure drop, axial velocity, tangential velocity, turbulence intensity of SV hydrocyclone are reduced in different degrees compared with conventional hydrocyclone, and the reduction becomes more obvious with the increase of vane width. In the case of a vane width of 0.04D, the underflow recovery rate of 5μm and 10μm fine particles was reduced by 16.2% and 15.7%. The selection of spiral vanes with small widths is beneficial to improve the separation accuracy of fine particles and reduce the cut particle size.
Rocznik
Strony
art. no. 173563
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Bibliografia
  • DUCZEK, S., DUVIGNEAU, F., GABBERT, U., 2016. The finite cell method for tetrahedral meshes. Finite Elements in Analysis and Design, 121, 18-32.
  • DUNDAR, H., 2020. Investigating the benefits of replacing hydrocyclones with high-frequency fine screens in closed grinding circuit by simulation. Minerals Engineering, 148, 106212.
  • HOU, D.X., CUI, B.Y., ZHANG, H., ZHAO, Q., JI, A.K., WEI, D.Z., FENG, Y.Q. 2021. Designing the hydrocyclone with flat bottom structure for weakening bypass effect. Powder Technology, 394, 724-734.
  • HOU, D.X., CUI, B.Y., ZHAO, Q., WEI, D.Z., SONG, Z.G., FENG, Y.Q., 2021. Research on the structure of the cylindrical hydrocyclone spigot to mitigate the misplacement of particles. Powder Technology, 387, 61-71.
  • HSIEH K.T., RAJAMANI K., 1988. Phenomenological model of the hydrocyclone: Model development and verification for single-phase flow. International Journal of Mineral Processing, 22(1-4), 223-237.
  • ISHAK, K.E.H.K., AYOUB, M.A., 2019. Predicting the Efficiency of the Oil Removal From Surfactant and Polymer Produced Water by Using Liquid-Liquid Hydrocyclone: Comparison of Prediction Abilities Between Response Surface Methodology and Adaptive Neuro-Fuzzy Inference System. IEEE Access, 7, 179605-179619.
  • JE, Y.W., KIM, Y.J., KIM, Y.J., 2022. The Prediction of Separation Performance of an In-Line Axial Oil-Water Separator Using Machine Learning and CFD. Processes, 10(2), 375.
  • JIANG, L.Y., LIU, P.K., YANG, X.H., ZHANG, Y.K., LI, X.Y., ZHANG, Y.L., WANG, H., 2020. Experimental research on the separation performance of W-shaped hydrocyclone. Powder Technology, 372, 532-541.
  • JIANG, L.Y., LIU, P.K., ZHANG, Y.K., LI, X.Y., YANG, X.H., XU, H.L, WANG, H., 2022. Experimental study of the separation performance of a hydrocyclone with a compound curve cone. Powder Technology, 409, 117829.
  • JING, J.Q., ZHANG, S.J., QIN, M., LUO, J.Q., SHAN, Y.T., CHENG, Y.Z., TAN, J.T., 2021. Numerical simulation study of offshore heavy oil desanding by hydrocyclones. Separation and Purification Technology, 258, 118051.
  • JUNG, K.J., HWANG, I.J., KIM, Y.J., 2019. Effect of inner wall configurations on the separation efficiency of hydrocyclone. Journal of Mechanical Science and Technology, 33(11), 5277-5283.
  • KOU, J., CHEN, Y., WU, J.Q., 2020. Numerical study and optimization of liquid-liquid flow in cyclone pipe. Chemical Engineering and Processing-Process Intensification, 147, 107725.
  • KUANG, S.B., CHU, K.W., YU, A.B., VINCE, A., 2012. Numerical study of liquid-gas-solid flow in classifying hydrocyclones: Effect of feed solids concentration. Minerals Engineering, 31, 17-31.
  • LEE, W., JUNG, M., HAN, S., PARK, S., PARK, J.K., 2020. Simulation of layout rearrangement in the grinding/classification process for increasing throughput of industrial gold ore plant. Minerals Engineering, 157, 106545.
  • LI, C.Y., LI, J.P., WANG, N.N., ZHAO, Q., WANG, P., 2021. Status of the treatment of produced water containing polymer in oilfields: A review. Journal of Environmental Chemical Engineering, 9(4), 105303.
  • LIU, P.K., FU, W.X., JIANG, L.Y., YANG, X.H., ZHANG, Y.K., LI, X.Y., ZHANG, Y.L., 2023. Effect of the Position of Overflow Pipe with Mixed Spiral Structures on the Separation Performance of Hydrocyclones. Separations, 10(2). 84.
  • LIU, P.K., FU, W.X., JIANG, L.Y., ZHANG, Y.K., LI, X.Y., YANG, X.H., CHEN, B., 2022. Effect of back pressure on the separation performance of a hydrocyclone. Powder Technology, 409, 117823.
  • LIU, B., LI, L.C., WANG, H.J., ZHAO, Z.J., QI, Y.G., 2020. Numerical simulation and experimental study on internal and external characteristics of novel Hydrocyclones. Heat and Mass Transfer, 56(6), 1875-1887.
  • MOKNI, I., DHAOUAD, H., BOURNOT, P., MHIRI, H., 2015. Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone. Chemical Engineering Science, 2015, 122, 500-513.
  • MURTHY, Y.R., BHASKAR, K.U., 2012. Parametric CFD studies on hydrocyclone. Powder Technology, 230, 36-47.
  • PADHI, M., KUMAR, M., MANGADODDY, N., 2020. Understanding the Bicomponent Particle Separation Mechanism in a Hydrocyclone Using a Computational Fluid Dynamics Model. Industrial & Engineering Chemistry Research, 59(25), 11621-11644.
  • PADHI, M., MANGADODDY, N., SREENIVAS, T., VAKAMALLA, T.R., MAINZA, A.N., 2019. Study on multicomponent particle behaviour in a hydrocyclone classifier using experimental and computational fluid dynamics techniques. Separation and Purification Technology, 229, 115698.
  • PATRA, G., VELPURI, B., CHAKRABORTY, S., MEIKAP, B.C., 2017. Performance evaluation of a hydrocyclone with a spiral rib for separation of particles. Advanced Powder Technology, 28(12), 3222-3232.
  • PATRA, G., BARNWAL, R., BEHERA, S.K., MEIKAP, B.C., 2018. Removal of dyes from aqueous solution by sorption with fly ash using a hydrocyclone. Journal of Environmental Chemical Engineering, 6(4), 5204-5211.
  • QIU, S.Z., WANG, T., WANG, G.R., ZHONG, L., FANG, X., 2023. Effect of Spiral Inlet Geometric Parameters on the Performance of Hydrocyclones Used for In Situ Desanding and Natural Gas Hydrate Recovery in the Subsea. ACS Omega, 2023, 8(6), 5426-5436.
  • SONG, T., YAO, Y., NI, L., 2020. Response surface method to study the effect of conical surface and vortex-finder lengths on de-foulant hydrocyclone with reflux ejector. Separation and Purification Technology, 253, 117511.
  • SU, T.L., ZHANG, Y.F., 2022. Effect of the Vortex Finder and Feed Parameters on the Short-Circuit Flow and Separation Performance of a Hydrocyclone. Processes, 10(4), 771.
  • TIAN, J.Y., NI, L., SONG, T., ZHAO, J.N., 2020. CFD simulation of hydrocyclone-separation performance influenced by reflux device and different vortex-finder lengths. Separation and Purification Technology, 233, 116013.
  • VAKAMALLA, T.R., MANGADODDY, N., 2019. The dynamic behaviour of a large-scale 250-mm hydrocyclone: A CFD study. Asia-Pacific Journal of Chemical Engineering, 14(2), e2287.
  • VEGA-GARCIA, D., BRITO-PARADA, P.R., CILLIERS, J.J., 2018. Optimising small hydrocyclone design using 3D printing and CFD simulations. Chemical Engineering Journal, 350, 653-659.
  • VYSYARAJU, R., PUKKELLA, A.K., 2022. Subramanian, S. Computational investigation of a novel hydrocyclone for fines bypass reduction. Powder Technology, 395, 501-515
  • WANG, W.Q., LIU Z.B., YANG F., 2023. Enrichment and Recovery of Lead-Zinc Tailings by Spiral Wall Cyclones. Academic Journal of Architecture and Geotechnical Engineering, 5, 14-20.
  • XIE, H.Y., SUN, R., REN, X.J., YOU, Z.C., LIU, Y.H., FENG, D.X., CHEN, L.Z., 2020. Development of a novel fluidized hydrocyclone concentrator for mineral separation. Separation and Purification Technology, 248, 116960.
  • XING, L., JIANG, M.H., ZHAO, L.X., GAO, J.M., LIU, L., 2022. Design and analysis of de-oiling coalescence hydrocyclone. Separation Science and Technology, 57(5), 749-767.
  • YANG, X.H., YANG, G.H., LIU, P.K., LI, X.Y., JIANG, L.Y., ZHANG, J.S., 2022. Study on the Desliming Performance of a Novel Hydrocyclone Sand Washer. Separations, 9(3), 74.
  • YE, Q., DUAN, P.B., KUANG, S.B., JI, L., ZOU, R.P., YU, A.B., 2022. Multi-objective optimization of hydrocyclone by combining mechanistic and data-driven models. Powder Technology, 407, 117674.
  • YE, J.X., XU, Y.X., SONG, X.F., YU, J.G., 2019. Numerical modelling and multi-objective optimization of the novel hydrocyclone for ultra-fine particles classification. Chemical Engineering Science, 207, 1072-1084.
  • ZHANG, H., NI, H.J., 2022. Design and Numerical Simulation on New Type Near-Bit Hydrocyclone for Downhole Solid-Liquid Separation. Arabian Journal for Science and Engineering, 47(9), 11941-11951.
  • ZHANG, Y.J., QIAN, J., 2012. Resolving topology ambiguity for multiple-material domains. Computer Methods in Applied Mechanics and Engineering, 247, 166-178.
  • ZHANG, C., WEI, D.Z., CUI, B.Y., LI, T.S., LUO, N., 2016. Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet. Powder Technology, 305, 156-165.
  • ZHAO, Z.J., ZHOU, L., LIU, B., CAO, W.D., 2022. Computational fluid dynamics and experimental investigation of inlet flow rate effects on separation performance of desanding hydrocyclone. Powder Technology, 402, 117363.
  • ZHOU, M., FARKAS, L.A., KOKKILIC, O., LANGLOIS, R., ROWSON, N.A., WATERS, K.E., 2023. An investigation into processing fine magnetite using a magnetic hydrocyclone. Canadian Metallurgical Quarterly, 62(3), 497-501.
  • ZHOU, F.Q., SUN, G.G., HAN, X.P., ZHANG, Y., BI, W.Q., 2018. Experimental and CFD study on effects of spiral guide vanes on cyclone performance. Advanced Powder Technology, 29(12), 3394-3403.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-743fb51a-9fd9-4efe-82d9-ec643244e271
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.