Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the properties of a strain sensor, which was made using the micro hole collapse method and operates in the configuration of a Mach-Zehnder modal interferometer with a PM-1550-01 polarization maintaining photonic crystal fibre. The sensor’s transfer curve was determined analytically. Its strain sensitivity, determined from measurements, decreases slightly with increasing wavelength and is in a range from -2.01 to -2.23 pm/με in the wavelength range 1520-1580 nm. Based on the Fourier analysis of the wavelength spectrum of the constructed sensor, the difference of the group refractive indices of the core and the cladding of the photonic crystal fibre was determined, which are in a range from 7.45·10-3 to 1.01·10-2. The temperature sensitivity of the sensor, determined on the basis of measurements performed in a range from 23 to 60°C, is positive and equals 5.9 pm/K.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
417--424
Opis fizyczny
Bibliogr. 14 poz., rys., wykr., wzory
Twórcy
autor
- Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Nadbystrzycka 38A, 20-619 Lublin, Poland
Bibliografia
- [1] Dong, X., Tam, H.Y. (2007). Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett., 90(15), 151113-151115.
- [2] Kaczmarek, C., Wójcik, W. (2015). Measurement of pressure sensitivity of modal birefringence of birefringent optical fibers using a Sagnac interferometer. Opt. Appl., 45(1), 5-14.
- [3] Noh, T.K., Ryu, U.C., Lee, Y.W. (2014). Compact and wide range polarimetric strain sensor based on polarization-maintaining photonic crystal fiber. Sensors and Actuarors A: Physical, 213, 89-93.
- [4] Gu, B., Yuan, W., He, S., Bang, O. (2012). Temperature compensated strain sensor based on cascaded interferometers and all-solid birefringent hybrid photonic crystal fibers. IEEE Sensors J., 12(6), 1641-1646.
- [5] Kaczmarek, C. (2012). Fiber optic strain sensor based on the Sagnac interferometer with a birefringent photonic crystal fiber. Przegląd Elektrotechniczny, 88(11b), 288-290.
- [6] Lim, J.H., Jang, H.S., Lee, K.S., Kim, C.J., Lee, B.H. (2004). Mach-Zhender interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Opt. Lett., 29(4), 346-348.
- [7] Choi, H.Y., Kim, M.J., Lee, B.H. (2007). All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express, 15(9), 5711-5719.
- [8] Villatoro, J., Kreuzer, M.P., Jha, R., Minkovich, V.P., Finazzi, V., Badenes, G., Pruneri, V. (2009). Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express, 17(3), 1447-1453.
- [9] Aref, S.H., et al. (2009). Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement. Opt. Express, 17(21), 18669-18675.
- [10] Kaczmarek, C. (2014). Compact PCF modal interferometer for sensor applications built by splicing. Proc. SPIE 9228, Optical Fibers and Their Applications, 92280R.
- [11] Villatoro, J., Minkovich, V.P., Monzon-Hernandez, D. (2006). Compact modal interferometer build with tapered microstructured optical fiber. IEEE Photon. Technol. Lett., 18(11), 1258-1260.
- [12] Wang, J.N., Tang, J.L. (2012). Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing. Sensors, 12, 2983-2995.
- [13] Rao, Y.J. (1997). In-fibre Bragg grating sensors. Meas. Sci. Technol., 8, 355-375.
- [14] Detka, M., (2017). Response of a uniform optical fiber Bragg grating to strain with a non-smooth distribution: measurements and simulation. Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics, 1044506.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-743d0a62-3ebd-4637-8a10-c74c3e4675be