PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing the behavior of GPR wave propagation in zinc contaminated soil combining the dielectric properties-experimental study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a very strong link between the behavior of ground penetrating radar (GPR) wave propagation in zinc-contaminated soil and the dielectric properties of soil. This relationship can be of signifcant use in the practices of quick detecting the degree of pollution in zinc-contaminated soil. In this research, measurements were conducted on the zinc-contaminated soil samples with diferent soil index properties (i.e., zinc ion concentration, wet density and moisture content). The radar refection wave data of the common midpoint and common-ofset sounding mode were obtained by using the 600 MHz antenna, and the relative permittivity was measured using the vector network analyzer. The attribute analysis of radar refection wave shows that the wave velocity is afected by wet density and moisture content, but independent of zinc ion concentration. Both the amplitude and the peak frequency decrease with the increase in zinc ion concentration, wet density and moisture content. For the soil dielectric properties, the metal ions can change the conductivity of solution in soil, afecting the imaginary part of relative permittivity, but with little efect on the real part. The positive correlations between the relative permittivity with density and moisture content are caused by the variation of three-phase composition of soil. Besides, the measured soil dielectric properties and the radar refected wave attributes confrm each other, which can well explain the change rules of electromagnetic wave velocity, amplitude and central frequency. The presented results can increase understanding and confdence on GPR for quantitative monitoring and detecting of zinc-contaminated soil.
Czasopismo
Rocznik
Strony
483--495
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
autor
  • College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
autor
  • College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
autor
  • College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
autor
  • College of Mechanical and Electrical Engineering, Hezhou University, Hezhou 542899, China
autor
  • College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
Bibliografia
  • 1. Ardekani M, Reza M (2013) Off- and on-ground GPR techniques for field-scale soil moisture mapping. Geoderma 200–201:55–66. https://doi.org/10.1016/j.geoderma.2013.02.010
  • 2. Babcock E, Bradford J (2013) Detecting subsurface contamination using ground penetrating radar and amplitude variation with offset analysis. In: 2013 7th international workshop on advanced ground penetrating radar, pp: 1–5. Doi: https://doi.org/10.1109/IWAGPR.2013.6601546
  • 3. Bai H, Sinfield JV (2017) Effects of GPR antenna configuration on sub-pavement drain detection based onthe frequency-shift phenomenon. J Appl Geophys 146:198–207. https://doi.org/10.1016/j.jappgeo.2017.09.019
  • 4. Bano M, Loeffler O, Girard JF (2009) Ground penetrating radar imaging and time-domain modelling of the infiltration of diesel fuel in a sandbox experiment. Comptesrendus Geosci 341(10–11):846–858. https://doi.org/10.1016/j.crte.2009.08.002
  • 5. Bate B, Burns SE (2014) Complex dielectric permittivity of organically modified bentonite suspensions (0.2–1.3 GHz). Can Geotech J 51(7):782–794. https://doi.org/10.1139/cgj-2013-0286
  • 6. Benson AK (1995) Applications of ground penetrating radar in assessing some geological hazards: examplesof groundwater contamination, faults, cavities. J Appl Geophys 33(1–3):177–193. https://doi.org/10.1016/0926-9851(95)90040-3
  • 7. Bermejo JL, Sauck WA, Atekwana EA (1997) Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB, Oscoda. Mich Groundw Monit Remediat 17(4):131–137. https://doi.org/10.1111/j.1745-6592.1997.tb01273.x
  • 8. Bohidar RN, Hermance JF (2002) The GPR refraction method. Geophysics 67(5):1474–1485. https://doi.org/10.1190/1.1512792
  • 9. Booth AD, Endres AL, Murray T (2009) Spectral bandwidth enhancement of GPR profiling data using multiple-frequency compositing. J Appl Geophys 67(1):88–97. https://doi.org/10.1016/j.jappgeo.2008.09.015
  • 10. Bradford JH (2010) Locating LNAPL contamination in the field using GPR velocity anomalies: examples from Hill AFB, Utah, USA. In: Near-surface geophysics and geohazards–proceedings of the 4(th) international conference on environmental and engineering geophysics, vol 2
  • 11. Cassidy NJ (2007) Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: Practical implications for hydrological studies. J Contam Hydrol 94(1–2):49–75. https://doi.org/10.1016/j.jconhyd.2007.05.002
  • 12. Cui XH, Guo L, Chen J et al (2013) Estimating tree-root biomass in different depths using ground-penetrating radar: Evidence from a controlled experiment. IEEE Trans Geosci Remote Sens 51(6):3410–3423. https://doi.org/10.1109/TGRS.2012.2224351
  • 13. Daniels DJ (1996) Surface-penetrating radar. Electron Commun Eng J 8(4):165–182. https://doi.org/10.1049/ecej:19960402
  • 14. Daniels JJ, Roberts R, Vendl M (1995) Ground penetrating radar for the detection of liquid contaminants. J Appl Geophys 33(1–3):195–207. https://doi.org/10.1016/0926-9851(95)90041-1
  • 15. Fernández-Álvarez JP, Rubio-Melendi D, Martínez-Velasco A et al (2016) Discovery of a mass grave from the Spanish Civil War using Ground Penetrating Radar and forensic archaeology. Forensic Sci Int 267:e10–e17. https://doi.org/10.1016/j.forsciint.2016.05.040
  • 16. Francisca FM, Rinaldi VA (2003) Complex dielectric permittivity of soil–organic mixtures (20 MHz–1.3 GHz). J Environ Eng 129(4):347–357. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:4(347)
  • 17. GB/T 50123–2019 (2019). Standard for geotechnical testing method. GB/T 50123–2019, Ministry of housing and urban rural development of the People’s Republic of China and state administration for market regulation, China Planning Press, Beijing
  • 18. Cassiani G, Binley A, Kemna A, et al (2014) Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. Environ Sci Pollut Res 21:8914–8931. https://doi.org/10.1007/s11356-014-2494-7
  • 19. He GB (2014) Discussion on the current situation, control and remediation of soil pollution in Guangxi in the new stage. J Guangxi Agric 29(6):83–86 ((in Chinese))
  • 20. Hermozilha H, Grangeia C, Matias MS (2010) An integrated 3D constant offset GPR and resistivity surv–ey on a sealed landfill —Ilhavo, NW Portugal. J Appl Geophys 70(1):58–71. https://doi.org/10.1016/j.jappgeo.2009.11.004
  • 21. Hong S, Wiggenhauser H, Helmerich R et al (2017) Long-term monitoring of reinforcement corrosion in concrete using ground penetrating radar. Corros Sci 114:123–132. https://doi.org/10.1016/j.corsci.2016.11.003
  • 22. Huang ZL, Zhang JZ (2014) Determination of Parameters of Subsurface Layers Using GPR Spectral Inve-rsion Method. IEEE Trans Geosci Remote Sens 52(12):7527–7533. https://doi.org/10.1109/TGRS.2014.2313603
  • 23. Huisman JA, Hubbard SS, Redman JD et al (2003) Measuring soil water content with ground penetrating radar: A Review. Vadose zone journal 2(4):476–491. https://doi.org/10.2113/2.4.476
  • 24. Ihamouten A, Villain G, Derobert X (2012) Complex permittivity frequency variations from multioffset GPR data: hydraulic concrete characterization. IEEE Trans Instrum Meas 61(6):1636–1648. https://doi.org/10.1109/TIM.2012.2190330
  • 25. Jol HM (2009) Ground penetrating radar theory and applications. Elsevier Science and Technology, Amsterdam
  • 26. Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32(14):57–70
  • 27. Lai WL, Kou SC, Poon CS (2012) Unsaturated zone characterization in soil through transient wetting and drying using GPR joint time–frequency analysis and grayscale images. J Hydrol (Amsterdam) 452–453:1–13. https://doi.org/10.1016/j.jhydrol.2012.03.044
  • 28. Li XG, Bai Y, Sui H et al (2018) Understanding desorption of oil fractions from mineral surfaces. Fuel 232(15):257–266. https://doi.org/10.1016/j.fuel.2018.05.112
  • 29. Linck R, Fassbinder JWE (2014) Determination of the influence of soil parameters and sample density on ground-penetrating radar: a case study of a Roman picket in Lower Bavaria. Archaeol Anthropol Sci 6(1):93–106. https://doi.org/10.1007/s12520-013-0145-4
  • 30. McCarthy M, Pritchard H, Willis I et al (2017) Ground-penetrating radar measurements of debris thickness on Lirung Glacier Nepal. J Glaciol 63(239):543–555. https://doi.org/10.17863/CAM.12780
  • 31. Miao XY, Hao YP, Zhang FW et al (2020) Spatial distribution of heavy metals and their potential sources in the soil of Yellow River Delta: a traditional oil field in China. Environ Geochem Health 42(1):7–26. https://doi.org/10.1007/s10653-018-0234-5
  • 32. Pazhouhan I, Najafi A, KamkarRouhani A et al (2019) Subsurface elements prediction for the design of forest road using ground penetrating radar technique. Bull Eng Geol Env 78(2):753–761. https://doi.org/10.1007/s10064-017-1180-7
  • 33. Porsani JL, Filho WM, Elis VR et al (2004) The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. J Appl Geophys 55(3–4):199–209. https://doi.org/10.1016/j.jappgeo.2003.11.001
  • 34. Pujari PR, Pardhi P, Muduli P et al (2007) Assessment of pollution near landfill site in Nagpur, India by resistivity imaging and GPR. Environ Monit Assess 131(1–3):489–500. https://doi.org/10.1007/s10661-006-9494-0
  • 35. Reis Jr JA, De Castro DL, Jesus TES et al (2014) Characterization of collapsed paleocave systems using GPR attributes. J Appl Geophys 103:43–56. https://doi.org/10.1016/j.jappgeo.2014.01.007
  • 36. Rejšek K, Hruška J, Kuba L et al (2015) A methodological contribution to use of Ground-Penetrating Radar (GPR) as a tool for monitoring contamination of urban soils with road salt. Urban Ecosyst 18(1):169–188. https://doi.org/10.1007/s11252-014-0391-y
  • 37. Santos VRN, Teixeira FL (2017) Study of time-reversal-based signal processing applied to polarimetric GPR detection of elongated targets. J Appl Geophys 139:257–268. https://doi.org/10.1016/j.jappgeo.2017.02.025
  • 38. Shang JQ, Ding W, Rowe RK et al (2004) Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks. Can Geotech J 41(6):1054–1067. https://doi.org/10.1139/t04-051
  • 39. Steelman CM, Endres AL (2012) Assessing vertical soil moisture dynamics using multi-frequency GPR common-midpoint soundings. J Hydrol 436–437:51–66. https://doi.org/10.1016/j.jhydrol.2012.02.041
  • 40. Van Meirvenne M, Van De Vijver E, Vandenhaute L, et al (2014). Investigating soil pollution with the aid of EMI and GPR measurements. In: Proceedings of the 15th international conference on ground penetrating Radar pp. 1006–1010. IEEE. Doi: https://doi.org/10.1109/ICGPR.2014.6970578
  • 41. Wijewardana YNS, Shilpadi AT, Mowjood MIM et al (2017) Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies. Environ Monit Assess 189(2):57. https://doi.org/10.1007/s10661-017-5770-4
  • 42. Xing WS, Chen XM, Chen FY, et al (2018) Analysis and evaluation of heavy metal pollution characteristics contaminated soil in land-lake ecotone. In: IOP conference series: materials science and engineering, Doi: https://doi.org/10.1088/1757-899X/392/4/042041
  • 43. Yannah M, Martens K, Van Camp M et al (2019) Geophysical exploration of an old dumpsite in the perspective of enhanced landfill mining in Kermt area, Belgium. Bull Eng Geol Env 78(1):55–67. https://doi.org/10.1007/s10064-017-1169-2
  • 44. Zajíček R, Oppl L, Vrba J (2008) Broadband measurement of complex permittivity using reflection method and coaxial probes. Radio Eng 17(1):14–19. https://doi.org/10.1070/QE2008v038n04ABEH013586
  • 45. Zhao W, Forte E, Fontana F et al (2018) GPR imaging and characterization of ancient Roman ruins in the Aquileia Archaeological Park, NE Italy. Measurement 113:161–171. https://doi.org/10.1016/j.measurement.2017.09.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-743a8417-0a49-4196-b4d3-3c35e3dfa10f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.