PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the characterization, liberation and flotation response of a Nigerian low-grade copper ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores the characterization, liberation and flotation response of low-grade copper ore from Anka area, Zamfara state Nigeria. The ore was crushed, milled and sieved in accordance with BS 410 standard. It was characterized with XRD, XRF, SEM-EDS and AAS. Froth flotation was carried out with varying %solids, pH, retention time and collector dosages using SEX and sodium oleate. Particle size distribution of the ore shows its economic liberation between -150 and +106 µm while 80% passing corresponds to 175.7 µm using the Gaudin Schuhmann equation. However, according to metallurgical balance calculation, 63 µm proved to have the highest metal content. Identified peaks of the copper ore by XRD revealed the presence of pyrite and chalcopyrite as the major mineral content at 47 and 36%, respectively, while other elements were present in traces. XRF shows Fe and Cu as the major elements and others in traces. Morphology, according to SEM-EDS, revealed that Fe is the major impurity while the presence of Cu and S confirmed chalcopyrite is present in the ore minerals. AAS shows an average of 25.87% Cu and 32% Fe in the ore. Optimum recoveries of copper were recorded at 30% solids, pH of 8, 30 minutes retention time. The highest recovery of 95.94% was recorded with SEX at 0.25 mol/dm3, while recoveries were lower with PAX, the highest recovery being 33% at 0.20 mol/dm3. 0.25 mol/dm3 of SEX recorded the highest yield and enrichment ratio of 40.38 and 2.38, respectively.
Rocznik
Strony
20--32
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Mineral Processing Research Centre, Department of Metallurgy, University of Johannesburg, Doornfontein Campus, P O Box 17911, Johannesburg 2028, South Africa
  • Mineral Processing Research Centre, Department of Metallurgy, University of Johannesburg, Doornfontein Campus, P O Box 17911, Johannesburg 2028, South Africa
Bibliografia
  • [1] Wirth H, Kulczycka J, Hausner J, Koński M. Corporate Social Responsibility: communication about social and environmental disclosure by large and small copper mining companies. Resour Pol 2016;49:53-60.
  • [2] Kalichini M, Corin KC, O'Connor CT, Simukanga S. The role of pulp potential and the sulphidization technique in the recovery of sulphide and oxide copper minerals from a complex ore. J. South. African Inst. Min. Metall. 2017;117(8):803-10.
  • [3] Baba Alafara A, Ayinla Kuranga I, Adekola Folahan A, Ghosh Malay K, Ayanda Olushola S, Bale Rafiu B, et al. A review on novel techniques for chalcopyrite ore processing. Int J Min Eng Miner Process; 2012;1:1-16.
  • [4] Tanimoto AH, Durany XG, Villalba G, Pires AC. Material flow accounting of the copper cycle in Brazil. Resour Conserv Recycl 2010;55(1):20-8.
  • [5] Yan H, Yuan Q, Zhou L, Qiu T, Ai G. Flotation kinetics and thermodynamic behavior of chalcopyrite and pyrite in high alkaline systems. Physicochem. Probl. Miner. Process. 2018;54.
  • [6] Li S, Gu G, Qiu G, Chen Z. Flotation and electrochemical behaviors of chalcopyrite and pyrite in the presence of N-propyl-N0-ethoxycarbonyl thiourea. Trans Nonferrous Metals Soc China 2018;28(6):1241-7.
  • [7] Ziyan Wang, Jiwen Si, Zhenguo Song, Peng Zhang, Jian Wang, Yizhan Hao, et al. Precise and instrumental measurement of thermodynamics and kinetics of froth flotation by Langmuir-blodgett technique. Colloids Surfaces A Physicochem. Eng. Asp. 2020;605:125337.
  • [8] Huang X, Jia Y, Cao Z, Wang S, Ma X, Zhong H. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite. Colloids Surfaces A Physicochem. Eng. Asp. 2019;583:123908.
  • [9] Bonnet C, Seck G, Hache E, Simoen M, Carcanague S. Copper at the crossroads: assessing the interactions of the low carbon energy transition with a non-ferrous and structural metal. juillet: IFPEN/IRIS; 2019.
  • [10] Brest KK, Henock MM, Guellord N, Kimpiab M, Kapiamba KF. Statistical investigation of flotation parameters for copper recovery from sulfide flotation tailings. Results Eng 2021;9:100207.
  • [11] Cilek EC, Tuzci G. Flotation behavior of native gold and gold-bearing sulfide minerals in a polymetallic gold ore. Part Sci Technol 2021:1-9.
  • [12] Oyelola AO, Abdu DA, Victor AD, Igonwelundu MT, Bosan BM, Oyebode AB. Extraction of a low grade zinc ore using gravity and froth flotation methods. J Appl Sci Environ Manag 2016;20(4):903-8.
  • [13] Davenport WG. Copper production. Encycl. Mater. Sci. Technol. 2001:1671-80. https://doi.org/10.1016/b0-08-043152-6/00294-1.
  • [14] T IM, Bosan BM. Extraction of a low grade zinc ore using gravity and froth flotation methods * 1 ALABI OLADUNNI OYELOLA ; 2 DALHATU ABOKI ABDU, vol. 3. ABERE DARE; 2016.
  • [15] Taguta J. The thermochemical behaviour of thiol collectors and collector mixtures with sulphide minerals. University of Cape Town; 2015.
  • [16] O. O. Ola-omole and W. Nheta, “Comparative effects of mineralogical differences on the flotation behavior of complex sulphide ores”.
  • [17] Bakalarz A. An analysis of copper concentrate from a kupferschiefer-type ore from legnica-glogow copper basin (SW Poland). Miner Process Extr Metall Rev 2021:1-13.
  • [18] Ajaka EO. Increasing economic EENEFITS from NIGERIAN minerals through accurate (compositional, analysis and processing. Int J Eng Sci 2010;2(1).
  • [19] Abdulfattah F, Rafukka IA, Manladan SM. Trends in characterization and beneficiation of non-ferrous metallic ores in Nigeria. In: Characterization of minerals, metals, and materials 2020. Springer; 2020. p. 47-55.
  • [20] Usaini MNS, Ali M, Usman HA. Determination of liberation size of Akiri copper ore, Nasarawa state. North-central Nigeria 2014;2(2):1444-52.
  • [21] Oyeladun OAW, Thomas DG, Yaro SA. Determination of the chemical composition and the work index of Rafin Gabas chalcopyrite ore. Niger. Min. J. 2012;10(1).
  • [22] Yerima ML, Abdulrahman AS. Physiochemical analysis of chanchaga ore, north Central Nigeria. J Appl Sci 2015;15(7):1020.
  • [23] Hochella MF. Atomic structure, microtopography, composition, and reactivity of mineral surfaces. Miner. interface geochemistry 2018:87-132.
  • [24] Friedrich BM, Marques JC, Olivo GR, Frantz JC, Joy B, Queiroz WJA. Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: evidence from inclusions in chromite. Miner Deposita 2020;55(6):1105-26.
  • [25] Kinnaird JA, Bowden P, Ixer RA, Odling NWA. Mineralogy, geochemistry and mineralization of the Ririwai complex, northern Nigeria. J Afr Earth Sci 1985;3(1-2):185-222.
  • [26] Chimonyo W, Fletcher B, Peng Y. The effect of oxidized starches on chalcopyrite flotation. Miner Eng 2021;165:106749.
  • [27] Wills BA, Finch J. Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann; 2015.
  • [28] Olade MA. Mineral deposits and exploration potential of Nigeria. Prescott books; 2021.
  • [29] Bakalarz A. Chemical and mineral analysis of flotation tailings from stratiform copper ore from Lubin Concentrator Plant (SW Poland). Miner Process Extr Metall Rev 2019;40(6):437-46.
  • [30] Asghari M, Nakhaei F, VandGhorbany O. Copper recovery improvement in an industrial flotation circuit: a case study of Sarcheshmeh copper mine. Energy Sources, Part A Recover Util Environ Eff 2019;41(6):761-78.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74324d20-0e7b-4731-a844-dae90d0a6398
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.