PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the degradation mechanisms of the hot forging tools

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanisms of the degradation of hot forging tools and several mathematical models for the theoretical evaluation of them are described. Examples of abrasive wear, oxidization, thermomechanical fatigue and plastic deformation and the interdependences between them, based on the authors’ research, are provided. According to the presented research the commonly accepted view that abrasive wear is the dominant mechanism in the degradation of the dies in hot forging is highly dubious. The effect of each of the above phenomena on the life of forging dies is generally considered separately and there is no holistic description of the physical wear process, which would cover all the phenomena simultaneously. In reality, the degradation phenomena occur simultaneously and interact with each other.
Rocznik
Strony
528--539
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • University of Technology Wroclaw, Institute of Production Engineering and Automation, Łukasiweicza 5 Street, 50-371 Wrocław, Poland
autor
  • University of Technology Wroclaw, Institute of Production Engineering and Automation, Łukasiweicza 5 Street, 50-371 Wrocław, Poland
autor
  • University of Technology Wroclaw, Institute of Production Engineering and Automation, Łukasiweicza 5 Street, 50-371 Wrocław, Poland
  • University of Technology Wroclaw, Institute of Production Engineering and Automation, Łukasiweicza 5 Street, 50-371 Wrocław, Poland
Bibliografia
  • [1] T. Altan, Cold and Hot Forging Fundamentals and Application, ASM International, Ohio, 2005.
  • [2] Z. Gronostajski, M. Hawryluk, J. Krawczyk, M. Marciniak, Numerical modelling of the thermal fatigue of steel WCLV used for hot forging dies, Eksploatacja i Niezawodnosc – Maintenance and Reliability 15 (2) (2013) 129–133.
  • [3] Z. Gronostajski, M. Hawryluk, M. Kaszuba, A. Niechajowicz, S. Polak, S. Walczak, D. Jablonski, Die profile optimization for forging constant velocity joint casing, Archives of Metallurgy and Materials 56 (2) (2011) 551–558.
  • [4] Z. Gronostajski, M. Hawryluk, M. Kaszuba, P. Sadowski, S. Walczak, D. Jablonski, Measuring and control system in industrial die forging processes, Eksploatacja i Niezawodnosc – Maintenance and Reliability 13 (3) (2011) 62–69.
  • [5] B. Płonka, M. Lech-Grega, K. Remsak, P. Korczak, A. Kłyszewski, Die forging of high-strength magnesium alloys – the structure and mechanical properties in different heat treatment conditions, Archives of Metallurgy and Materials 58 (1) (2013) 127–132.
  • [6] Z. Pater, J. Tomczak, Experimental tests for cross wedge rolling of forgings made from non-ferrous metal alloys, Archives of Metallurgy and Materials 57 (4) (2012) 919–928.
  • [7] R.G. Bayer, Mechanical Wear Fundamentals and Testing, Marcel Dekker Inc., New York, 2004.
  • [8] Z. Gronostajski, M. Hawryluk, The main aspects of precision forging, Archives of Civil and Mechanical Engineering 8 (2) (2008) 39–57.
  • [9] A. Kocańda, Określenie trwałości narzędzia w obróbce plastycznej metali, rozdział w monografii pt., in: A. Piela, F. Grosman, J. Kusiak, M. Pietrzyk (Eds.), Informatyka w Technologii Metali, red., Wydawnictwo Politechniki Śląskiej, Gliwice, 2003, pp. s.213–s.256.
  • [10] ASM Handbook – Forming and Forging, Volume 14.
  • [11] J.A. Smolik, Hybrid surface treatment technology for increase of hot forging dies, Archives of Metallurgy and Materials 57 (3) (2012) 657–664.
  • [12] H. Paschke, M. Weber, G. Braeuer, T. Yilkiran, B.A. Behrens, H. Brand, Optimized plasma nitriding processes for efficient wear reduction of forging dies, Archives of Civil and Mechanical Engineering 12 (4) (2012) 407–412.
  • [13] T. Yilkiran, B.A. Behrens, H. Paschke, M. Weber, H. Brand, The potential of plasma deposition techniques in the application field of forging processes, Archives of Civil and Mechanical Engineering 13 (3) (2012) 284–291.
  • [14] J.F. Archard, Contact and rubbing of at surfaces, Journal of Applied Physics 24 (8) (1953) 981–988.
  • [15] J. Smolik, Rola warstw hybrydowych typu warstwa azotowana/powłoka PVD w procesie zwiększania trwałości matryc kuźniczych, WITE, Radom, 2007.
  • [16] B. Pachutko, S. Ziółkiewicz, Badania procesów zużycia matryc do kucia zaczepu budowlanego na podstawie badań metalograficznych, Obróbka Plastyczna Metali XXIII (4) (2012) 277–293.
  • [17] Z. Gronostajski, M. Hawryluk, R. Kuziak, K. Radwański, T. Skubiszewski, M. Zwierzchowski, The equal channel angular extrusion process of multiphase high strength aluminium bronze, Archives of Metallurgy and Materials 57 (4) (2012) 897–909.
  • [18] M. Stembalski, P. Preś, W. Skoczyński, Determination of the friction coefficient as a function of sliding speed and normal pressure for steel C45 and steel 40HM, Archives of Civil and Mechanical Engineering 4 (2013) 415–528.
  • [19] D. Heinemeyer, Gensekschäden und Einflussgrössen der Standmenge, Industrieanzeiger 100 (1978) 73.
  • [20] O. Barrau, C. Boher, R. Gras, F. Rezai-Aria, Analysis of the friction and wear behaviour of hot work tool steel for forging, Wear 255 (2003).
  • [21] R. Lapovok, S. Smirnov, V. Shveykin, Damage mechanics for the fracture prediction of metal forming tools, International Journal of Fracture 103 (2) (2000) 111–126.
  • [22] T.H. Kim, B.M. Kim, J.C. Choi, Prediction of die wear in the wiredrawing process, Journal of Materials Processing Technology 65 (1–3) (1997) s.11–s.17.
  • [23] Z. Gronostajski, M. Hawryluk, M. Zwierzchowski, M. Kaszuba, A. Niechajowicz, Opis zjawisk zużycia matryc do kucia na gorąco tarczy do skrzyni biegów, Hutnik-Wiadomości Hutnicze R 78 (8) (2011) s.607–s.611.
  • [24] E. Ryuichiro, K. Katsuaki, Failure analysis of hot forging dies for automotive components, Engineering, Failure Analysis 15 (2008) s.881–s.893.
  • [25] D. Pieniak, A. Niewczas, P. Kordos, Influence of thermal fatigue and ageing on the microhardness of polymer–ceramic composites for bio-medical applications, Eksploatacja i Niezawodnosc – Maintenance and Reliability 14 (2) (2012) 181–188.
  • [26] M. Orkisz, Ł. Święch, J. Zacharzewski, Fatigue tests of motor glider wing's composite spar, Eksploatacja i Niezawodnosc – Maintenance and Reliability 14 (3) (2012) 228–232.
  • [27] A. Klimpel, Technologie napawania i natryskiwania cieplnego, WPŚ, 1999.
  • [28] J.A. Williams, Wear modelling: analytical, computational and mapping: a continuum mechanics approach, Wear 225–229 (1999) 1–17.
  • [29] J. Ding, Determining fatigue wear using wear particle analysis tools, Practicing Oil Analysis (2003).
  • [30] L. Blunt, K. Stout, Three Dimensional Surface Topography, Butterworth-Heinemann, 2000.
  • [31] O. Barrau, C. Boher, C. Vergne, F. Rezai-Aria, R. Gras, Investigations of friction and wear mechanisms of hot forging tool steels, Wear 255 (2003) 95–111.
  • [32] Z. Baccouch, R. Mnif, R. Elleuch, C. Richard, Analysis of friction, wear and oxidation behaviour of X40CrMoV5/Fe360B steel couple in an open-sliding contact, Journal of Engineering Tribology 228 (2014) 276–287.
  • [33] P. Baque, P. Fernier, Les Notes Techniques du CETIM 12 (1975).
  • [34] M. Pellizzari, A. Molinari, G. Straffelini, Thermal fatigue resistance of plasma duplex-treated tool steel, Surface and Coatings Technology 142–144 (2001) 1109–1115.
  • [35] A. Perssona, S. Hogmarkb, J. Bergstroma, Thermal fatigue cracking of surface engineered hot work tool steels, Surface and Coatings Technology 191 (2005) 216–227.
  • [36] Ch. Choi, A. Groseclose, T. Altan, Estimation of plastic deformation and abrasive wear in warm forging dies, Journal of Materials Processing Technology 212 (August (8)) (2012) 1742–1752.
  • [37] A. Grüning, M. Lebsanft, B. Scholtes, Cyclic stress–strain behavior and damage of tool steel AISI H11 under isothermal and thermal fatigue conditions, Materials Science and Engineering 527 (7–8) (2010) 1979–1985.
  • [38] E. Virtanen, C.J. Van Tyne, B.S. Levy, G. Brada, The tempering parameter for evaluating softening of hot and warm forging die steels, Journal of Materials Processing Technology 213 (August (8)) (2013) 1364–1369.
  • [39] J.H. Hollomon, L.D. Jaffe, Time–temperature relations in tempering steel, Transactions of AIME 162 (1945) 223–249.
  • [40] A. Medvedevaa, J. Bergstromb, S. Gunnarssona, J. Anderssona, High-temperature properties and microstructural stability of hot-work tool steels, Materials Science and Engineering, A 523 (2009) 39–46.
  • [41] A. Katunin, The conception of the fatigue model for layered composites considering thermal effects, Archives of Civil and Mechanical Engineering 11 (2) (2011) 333–342.
  • [42] A. Srivastava, V. Joshi, R. Shivpuri, Computer modeling and prediction of thermal fatigue cracking in die-casting tooling, Wear 256 (2004) 38–43.
  • [43] Z. Gronostajski, M. Hawryluk, M. Zwierzchowski, M. Kaszuba, Zużycie matryc do kucia na gorąco odkuwki koła czołowego, Rudy i Metale Nieżelazne R. 56 (11) (2011) 571–576.
  • [44] B. Sagbas, M. Numan, Measurement of wear in orthopedic prosthesis, in: Proceedings of the International Congress on Advances in Applied Physics and Materials Science, Antaly, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-742e2050-d664-4594-82cd-7a7f17e2ded7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.