PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the influence of the skin effect on the maximum efficiency of the WPT system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ocena wpływu efektu naskórkowości na maksymalną sprawność systemu WPT
Języki publikacji
EN
Abstrakty
EN
The article presents the influence of the skin effect on the maximum possible efficiency in the developed periodic Wireless Power Transfer (WPT) systems. The presented periodic WPT system allows for the simultaneous supply / charging of many low-power receivers. The analysis was performed based on the two proposed methods, i.e. analytical and numerical. The analytical solution of the transmitting-receiving system takes into account the parameters calculated based on analytical equations concerning the influence of magnetic couplings, structure geometry and loads. A numerical solution was also proposed, which allows the number of degrees of freedom to be reduced by applying periodic conditions. In order to verify the proposed methods and check the influence of the skin effect on the efficiency of the WPT system, calculations and analysis were performed for models that took into account the variability of the number of turns, the distance between the transmitting and receiving coils, and the frequency of the energy source. The results prove that taking into account the skin effect in the proposed low-power WPT systems reduces the efficiency of the system by up to 8%
PL
W artykule przedstawiono wpływ efektu naskórkowości na maksymalną możliwą do uzyskania sprawność w opracowanych periodycznych układach Wireless Power Transfer (WPT). Zaprezentowany periodyczny układ WPT pozwala na jednoczesne zasilanie/ładowanie wielu odbiorników małej mocy. Analiza przykładowych wariantów została wykonana na podstawie zaproponowanych dwóch metod, tj. analitycznej i numerycznej. Rozwiązanie analityczne układu nadawczo-odbiorczego, uwzględnia parametry obliczone na podstawie równań analitycznych dotyczących wpływu sprzężeń magnetycznych, geometrii konstrukcji i obciążeń. Zaproponowano również rozwiązanie numeryczne, które pozwala na redukcję liczby stopni swobody poprzez zastosowanie warunków periodycznych. W celu weryfikacji zaproponowanych metod i sprawdzenia wpływu efektu naskórkowości na sprawność układu WPT wykonano obliczenia i analizę dla modeli, w których uwzględniono zmienność liczby zwojów, odległość między cewką nadawczą i odbiorczą oraz częstotliwość źródła energii. Wyniki dowodzą, że uwzględnienie efektu naskórkowości w zaproponowanych układach WPT małej mocy powoduje zmniejszenie sprawności układu nawet o 8%.
Rocznik
Strony
73--79
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Białystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Sun L., Ma, D., Tang, H., A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging, Renewable and Sustainable Energy Reviews, 91 (2018), 490-503
  • [2] Luo Z., Wei X., Analysis of Square and Circular Planar Spiral Coils in Wireless Power Transfer System for Electric Vehicles, IEEE Trans. Ind. Electron, 65 (2018), 331-341
  • [3] Batra T., Schaltz E., Ahn S., Effect of ferrite addition above the base ferrite on the coupling factor of wireless powertransfer for vehicle applications, Journal of Applied Physics, 117 (2015), 17D517
  • [4] Longzhao Sun, Dianguang Ma, Houjun Tang, A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging, Renewable and Sustainable Energy Reviews, 91 (2018), issue C, 490-503
  • [5] Fitzpatrick D. C., Implantable Electronic Medical Devices,Academic Press: San Diego, United States, 2014, 7-35
  • [6] Li X., Zhang H., Peng F., Li Y., Yang T., Wang B., Fang D., A wireless magnetic resonance energy transfer system for micro implantable medical sensors, Sensors, 12 (2012), 10292–10308
  • [7] Stankiewicz J.M., Choroszucho A., Efficiency of the Wireless Power Transfer System with Planar Coils in the Periodic and Aperiodic Systems, Energies, 15 (2022), no. 1, 115
  • [8] Zhang W., Wong S.-C., Tse C.K., Chen Q., Analysis and comparison of secondary series-and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,IEEE Transactions on Power Electronics, 29 (2014), No. 6, art. no. 6558867, 2979-2990
  • [9] Sołjan Z., Hołdyński G., Zajkowski M., The mathematical concept of the currents’ asymmetrical components in three-phase four-wire systems with sinusoidal and asymmetric voltage supply, Bulletin of the Polish Academy of Sciences, Technical Sciences, 67 (2019), 271-278
  • [10] Wei X., Wang Z., Dai H., A critical review of wireless power transfer via strongly coupled magnetic resonances, Energies, 7 (2014), No. 7, 4316-4341
  • [11] Barman S.D., Reza A.W., Kumar N., Karim Md. E., Munir A.B., Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications, Renewable and Sustainable Energy Reviews, 51 (2015), 1525-1552
  • [12] "Alternative Energy", EETimes, June 21, 2010
  • [13] Kurs A., Karalis A., Moffatt R., Joannopoulos J.D., Fisher P., Soljačić, M., Wireless power transfer via strongly coupled magnetic resonances, Science, 2007, 317 (5834), 83-86
  • [14] Kurs A., Moffatt R., Soljačić M., Simultaneous mid-range power transfer to multiple devices, Applied Physics Letters, 2010, 96 (4), art. no. 044102
  • [15] Imura T., Hori Y., Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula, IEEE Transactions on Industrial Electronics, 2011, 58 (10), art. no. 5709980, pp. 4746-4752
  • [16] Liu X., Wang G., A Novel Wireless Power Transfer System With Double Intermediate Resonant Coils, IEEE Transactions on Industrial Electronics, 63 (2016), 2174-2180
  • [17] Cannon B.L., Hoburg J.F., Stancil D.D., Goldstein S.C., Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers, IEEE Trans. Power Electron., 24 (2009), No. 7, 1819–1825
  • [18] Stankiewicz J.M., Choroszucho A., Comparison of the Efficiency and Load Power in Periodic Wireless Power Transfer Systems with Circular and Square Planar Coils, Energies, 14 (2021), no. 16, 4975
  • [19] Zhong W., Lee C.K., Hui S.Y.R., General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer, IEEE Trans. Ind. Electron., 60 (2013), 261–270
  • [20] Alberto J., Reggiani U., Sandrolini L., Albuquerque H., Fast calculation and analysis of the equivalent impedance of a wireless power transfer system using an array of magnetically coupled resonators, PIER B, 80 (2018), 101–112
  • [21] Stankiewicz J.M., The analysis of the influence of the plane coils geometry configuration on the efficiency of WPT system, Przegląd Elektrotechniczny, 96 (2020), no. 10, 174-178
  • [22] Christ A., Douglas M.G., Roman J.M., Cooper E.B., Sample A.P., Waters B.H., et al., Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits, IEEE Trans Electromagn. Compat., 55 (2013), No. 2, 265–74
  • [23] Steckiewicz A., Choroszucho A., Optimization-based synthesis of a metamaterial electric cloak using nonhomogeneous composite materials, Journal of Electromagnetic Waves and Applications, 33 (2019), No. 14, 1933-1941
  • [24] Wang B., Yerazunis W., Teo K.H., Wireless Power Transfer: Metamaterials and Array of Coupled Resonators, Proc. of the IEEE., 101 (2013), 1359–1368
  • [25] Wei B., Wang S., Jiang C., Jiang B., He H., Liu M., MatrixMetamaterial Shielding Design for Wireless Power Transfer to Control the Magnetic Field, Materials, 15 (2022), No. 7, 2678. https://doi.org/10.3390/ma15072678
  • [26] Alberto J., Reggiani U., Sandrolini L., Albuquerque H., Accurate calculation of the power transfer and efficiency in resonator arrays for inductive power transfer, PIER, 83 (2019), 61–76
  • [27] Choroszucho A., Butryło B., Local attenuation of electromagnetic field generated by wireless communication system inside the building, Przegląd Elektrotechniczny, 87(7), (2011), 123-127
  • [28] Zienkiewicz O.C., Taylor R.L., Zhu J.Z., The finite element method: it's basis & fundamentals 7th edition, Butterworth-Heinemann, 2013
  • [29] Taflove A., Hagness S. C., Computational Electrodynamics: The finite – difference time – domain method. Boston, Artech House, 2005
  • [30] Choroszucho A., Butryło B., Inhomogeneities and dumping ofhigh frequency electromagnetic field in the space close to porous wall, Przegląd Elektrotechniczny, 88(5a), (2012), 263-266
  • [31] Oskooi A.F., Roundyb D., Ibanescua M., Bermelc P., Joannopoulosa J.D., Johnson S.G., MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method, Computer Physics Communications, 181 (2010), 687-702
  • [32] Mohan S., Hershenson M., Boyd S., Lee T., Simple Accurate Expressions for Planar Spiral Inductances, IEEE Journal of solid-state circuits, 34 (1999), no. 10, 1419-1424
  • [33] Liu S., Su J., Lai J., Accurate Expressions of Mutual Inductance and Their Calculation of Archimedean Spiral Coils, Energies, 12 (2017), no. 10, 1-14
  • [34] Knight D.W., Practical continuous functions for the internal impedance of solid cylindrical conductors, G3YNH 2016, doi:10.13140/RG.2.1.3865.1284, url: http://g3ynh. info/zdocs/comps/Zint.pdf (visited on 06/06/2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7429f4c5-db72-44a3-9480-338469ef5f38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.