PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing surface fatigue crack growth in railway wheelset axle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the proposed research is to create a calculation model of surface fatigue crack growth at the axle of railway wheelset working under operational loads. Design/methodology/approach: The energy approach of the fracture mechanics was used to formulate the calculation model of fatigue crack propagation at the wheelset axle surface. The method of least squares was used to determine the investigated material mechanical constants that the kinetic equations of the calculation model contain. The system of differential equations of crack growth kinetics was solved numerically using the Runge-Kutta method. Findings: On the basis of the energy approach of the fracture mechanics the calculation model of fatigue macrocrack growth in three-dimensional elastic-plastic body in case of a mixed-mode I+II+III macromechanism of fracture has been built. On the basis of the created calculation model, the kinetics of the growth of fatigue cracks was investigated both in the middle part of the wheelset axle and in the axle journal. Research limitations/implications: The results obtained on laboratory specimens should be tested during a real railway wheelset axle investigation. Practical implications: The created calculation model can be used in practice to formulate method of residual lifetime estimation of railway wheelset axle. Originality/value: It was shown, that surface crack kinetics depends not only on the crack initial area but also significantly depends on the crack edge geometry and comparatively small crack-like defects at the wheelset axle surface can reach critical sizes in comparatively short run. It has been found that mechanical shear stresses caused by the weight of the loaded railway wagon in the cross section of the wheelset axle journal can significantly accelerate the growth of the transverse fatigue crack at the axle surface, reducing the period of crack subcritical growth by about 20%.
Rocznik
Strony
59--67
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • The John Paul II Catholic University of Lublin, 14 Racławickie Av., 20-950 Lublin, Poland
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
Bibliografia
  • [1] U. Zerbst, S. Beretta, G. Kohler, A. Lawton, M. Vormwald, H.T. Beier, C. Klinger, I. Cerny, J. Rudlin, T. Heckel, D. Klingbeil, Safe life and damage tolerance aspects of railway axles - A review, Engineering Fracture Mechanics 98/1 (2013) 214-271. DOI: https://doi.org/10.1016/j.engfracmech.2012.09.029
  • [2] O.P. Ostash, I.M. Andreiko, V.V. Kulyk, I.H. Uzlov, O.I. Babachenko, Fatigue durability of steels of railroad wheels, Materials Science 43/3 (2007) 403-414. DOI: https://doi.org/10.1007/s11003-007-0046-8
  • [3] L. Nahlik. P. Pokorny, M. Śevcik, R. Fajkos, P. Matusek, P. Hutar, Fatigue lifetime estimation of railway axles, Engineering Failure Analysis 73 (2017) 139-157. DOI: https://doi.org/10.1016/i.engfailanal.2016.12.014
  • [4] Z. Odanovic, Analysis of the railway freight car axle fracture, Procedia Structural Integrity 4 (2017) 56-63. DOI: https//doiorg/10J.1016j.prostr.2017J0.7009
  • [5] F. Dikmen, M. Bayraktar, R. Guclu, Determination of critical section of wagon axle by considering dynamic and safety factors, Alexandria Engineering Journal 58/2 (2019) 611-624. DOI: https://doi.org/10.1016Zj.aej.2019.05.010
  • [6] M. Rieger, C. Moser, P. Brunnhofer, D. Simunek, F.-J. Weber, A. Deisl, H-P. Ganser, R. Pippan, N. Enzinger, Fatigue crack growth in full-scale railway axles - Influence of secondary stresses and load sequence effects, International Journal of Fatigue 132 (2019) 105360. DOI: https://doi.org/10.1016/i.iifatigue.2019.105360
  • [7] O.P. Ostash, V.V. Kulyk, T.M. Lenkovskiy, Z.A. Duriagina, V.V. Vira, T.L. Tepla, Relationships between the fatigue crack growth resistance characteristics of a steel and the tread surface damage of railway wheel, Archives of Materials Science and Engineering 90/2 (2018) 49-55. DOI: https://doi.org/10.5604/01.3001.0012.0662
  • [8] R.A. Smith, S. Hillniansen, A brief historical overview of the fatigue of railway axles, Proceedings of Institute of Mechanical Engineering, Part F: Journal of Rail and Rapid Transit 218/4 (2004) 267-277. DOI: https://doi.org/10.1243/0954409043125932
  • [9] K. Hirakawa, K. Masanobu, On the fatigue design method for high speed railway axles, Proceedings of Institute of Mechanical Engineering. Part F: Journal of Rail and Rapid Transit 215/2 (2001) 73-82. DOI: https://doi.org/10.1243/0954409011531413
  • [10] HM Railway Inspectorate, Railway accident at Rickerscote. A report of the Investigation into the derailment of a fraight train and the subsequent collision with a travelling post office train on 8 March (1996). Access date: 16.05.19. Available at: http://www.railwaysarchive.co.ukZdocumentsZHSE Ri ckerscote1996.pdf
  • [11] Transportation Safety Board of Canada, Railway investigation report R04V0173. Main-track train derailment. Access date: 21.05.19, Available at: http://www.tsb.gc.caZeng/rapports- reports/rail/2004/r04v0173/r04v0173.pdf
  • [12] Transportation Safety Board of Canada, Railway investigation report R10T0035. Main-track train derailment. Access date: 27.06.19, Available at: http://www.tsb.gc.caZeng/rapports- reports/rail/2010/r10t0035/r10t0035.pdf
  • [13] A. F. Gavrilyuk, T. A. Ryabets, State and analysis of safety on the railways of Ukraine. Ways of development of non-destructive testing, UkrNIINK site, 2010. Access date: 11.05.19, Available at: http://www.ndt.com.uaZru/applications/railway/sostoy anie-i-analiz-bezopasnosti-na-zheleznykh-dorogakh- ukrainy-pnti-razvitiya-sredstv-neiazrushayushchego- kontrolya.
  • [14] The cause of the accident on the railway in the Cherkassy region is named, Information agency «Unian», Kyiv, 2014. Access date: 04.06.19, Available at: http://www.unian.net/politics/954278-nazvana-prichina- avarii-na-ieleznoy-doroge-v-cherkasskoy-oblasti.html
  • [15] P. Pokorny, P. Hutar, L. Nahlik, Residual fatigue lifetime estimation of railway axles for various loading spectra, Theoretical and Applied Fracture Mechanics 82 (2015) 25-32. DOI: https://doi.org/10.1016/j.tafmec.2015.06.007
  • [16] M. Luke, I. Varfolomeev, K. Lutkepohl, A. Esderts, Fatigue crack growth in railway axles: Assessment concept and validation tests, Engineering Fracture Mechanics 78/5 (2011) 714-730. DOI: https://doi.Org/10.1016/j.engfracmech.2010.11.024
  • [17] R. Hannemann, P. Koster, M. Sander, Fatigue crack growth in wheelset axles under bending and torsional loading, International Journal ofFatigue 118 (2018) 262-270. DOI: https://doi.org/10.1016/j.ijfatigue.2018.07.038
  • [18] A.P. Sorochak, P.O. Maruschak, O.P. Yasniy, T. Vuherer, S.V. Panin, Evaluation of dynamic fracture toughness parameters of locomotive axle steel by instrumented Charpy impact test, Fatigue and Fracture of Engineering Materials and Structures 40/4 (2017) 512-522. DOI: https://doi.org/10.1111/ffe.12510
  • [19] A. Sorochak, P. Maruschak, O. Prentkovskis, Cyclic fracture toughness of railway axle and mechanisms of its fatigue fracture, Transport and Telecommunication 16/2 (2015) 158-166. DOI: https://doi.org/10.1515/ttj- 2015-0015
  • [20] S. Beretta, M. Carboni, Experiments and stochastic model for propagation lifetime of railway axles, Engineering Fracture Mechanics 73/17 (2006) 2627-2641. DOI: https://doi.org/10.1016/j.engfracmech.2006.04.024
  • [21] O. Yasniy, Y. Lapusta, Y. Pyndus, A. Sorochak, V. Yasniy. Assessment of lifetime of railway axle, International Journal of Fatigue 50 (2013) 40-46. DOI: https://doi.org/10.1016/j.ijfatigue.2012.04.008
  • [22] A.E. Andreikiv, A.I. Darchuk, Fatigue fracture and durability of structures, Naukova Dumka, Kiev, 1992 (in Ukrainian).
  • [23] L.I. Sedov, Continuum mechanics. Vols. 1, 2. Nauka, Moscow, 1973 (in Russian).
  • [24] D.V. Rudavs’kyi, Evaluation of the residual life of a three-dimensional solid body weakened by a plane fatigue crack under cyclic loading, Materials Science 51/3 (2015) 348-357. DOI: https://doi.org/10.1007/s11003-015-9848-2
  • [25] V.V Panasyuk, Mechanics of quasibrittle fracture of materials, Naukova Dumka, Kiev, 1991 (in Ukrainian).
  • [26] D.V. Rudavskyy, Yu.I. Kanyuk, V.R. Bas, Calculation model of growth of a fatigue macrocrack in case of the I+III Mixed-Mode macromechanism of fracture, Metallofizika i Noveishie Tekhnologii 38/3 (2016) 415-425. DOI: https://doi.org/10.15407/mfint.38.03.0415
  • [27] J.C. Butcher, Numerical methods for ordinary differential equations, John Wiley and Sons, New York, 2008.
  • [28] N.M. Belyaev, Strength of materials, Nauka, Moscow, 1976 (in Russian).
  • [29] N.-A. Noda, M. Kagita. Variations of stress intensity factors of a semi-elliptical surface crack subjected to mode I, II, III loading, International Journal of Pressure Vessels and Piping 81/7 (2004) 635-644. DOI: https://doi.org/10.1016/j.ijpvp.2004.03.008
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7429e2fe-c5f8-4741-9c93-a70665fb5a8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.