PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent Recognition of Colour and Contour from Ancient Chinese Embroidery Images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ancient Chinese embroidery is an important intangible part of the cultural heritage of mankind. Its colours and contours are a major source of oriental inspiration and design elements for designers today. This study presents an effective intelligent recognition of colour and contour based on K-means++ clustering and the Canny operator for colour and contour application of ancient Chinese embroidery images and for digital inheritance and innovation. First, digital cameras and portable scanners were used in embroidery image acquisition. Second, colour level adjustment, sharpening and smoothing were specially added to the preprocessing, because of the ancient embroidery age or colour errors caused by the shooting angle. Third, K-means++ clustering was used for colour clustering. Fourth, the Canny operator was used for contour detection. After the addition of colour level adjustment and sharpening in the preprocessing, the colours and contours could be acquired accurately and more effectively from embroidery images and be read and edited independently.
Rocznik
Strony
79--92
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • School of Design, Jiangnan University, Wuxi, China
  • Jiangsu Intangible Cultural Heritage Research Base, Wuxi, China
autor
  • School of Design, Jiangnan University, Wuxi, China
  • Jiangsu Intangible Cultural Heritage Research Base, Wuxi, China
autor
  • School of Internet of Things Engineering, Jiangnan University, Wuxi, China
  • Jiangnan Institute of Automation, Wuxi, China
autor
  • School of Internet of Things Engineering, Jiangnan University, Wuxi, China
  • Jiangnan Institute of Automation, Wuxi, China
Bibliografia
  • 1. Sarah Cheang. Selling China: Class, Gender and Orientalism at the Department Store. Journal of Design History 2007,20(1),1–16.
  • 2. X. Li, H. Jiang, K. Nam. Adaptation in cultural industry under conservation pressure: case study of two Chinese embroidery clusters. International Journal of Cultural Policy 2020,26(2),202-222.
  • 3. H. L. Yu, C. Kim, J. Lee, N. Hong. An analysis of modern fashion designs as influenced by Asian ethnic dress. International Journal of Consumer Studies 2001,25(4), 309–321.
  • 4. Hong Jung Min, Kim Young Sin. A Study on Miao Traditional Costume of Guizhou Province in China (II)- Focused on Woman’s Costume in Miao People in Taijiang. Fashion & Textile Research Journal 2001,3(2),115-123.
  • 5. J. H. Xin, H. Shen, C. Lam. Investigation of texture effect on visual colour difference evaluation. Color Research and Application 2005, 30(5), 341–347.
  • 6. S. Gorji Kandi, M. Amani Tehran, M. Rahmati. New method for obtaining proper initial clusters to perform FCM algorithm for colour image clustering. Journal of the Textile Institute 2009,100(3),237-244.
  • 7. C. J. Kuo, B. Jian, C. Tung, H. Wu, Automatic machine embroidery image color analysis system, part II: Application of the genetic algorithm in search of a repetitive pattern image. Textile Research Journal 2012, 82(11), 1099–1106.
  • 8. J. Zhang, B. Xin, C. Shen, H. Fang , Y.Cao. Novel colour clustering method for interlaced multi-colored dyed yarn woven fabrics. Fibres and Textiles in Eastern Europe 2015, 23(111), 107–114.
  • 9. D. Zheng. A new method for automatic separation of fabric color. Textile Research Journal 2014,85(14), 1520–1538.
  • 10. Le Xing, Jie Zhang, Hui’e Liang & Zhongjian Li. Intelligent inspection of dominant colors for Chinese traditional folk Yunjian. Journal of Textile Research 2017,38(11), 110–115.
  • 11. C. Kumah, N. Zhang, R. K. Raji, R. Pan. Color measurement of segmented printed fabric patterns in lab color space from RGB digital images. Journal of Textile Science and Technology 2019,05(1),1-18.
  • 12. A Singh L, Huang H, Bordoloi S, et al. Exploring simple K-means clustering algorithm for automating segregation of colors in leaf of Axonopus compressus: Towards maintenance of an urban landscape. Journal of Intelligent and Fuzzy Systems 2020, 40(6),1-25.
  • 13. Kalbasi M, Nikmehr H. Noise-Robust, Reconfigurable Canny Edge Detection and its Hardware Realization. IEEE Access 2020, PP (99),1-1.
  • 14. A. AN, A.Kuerban. Edge extraction method of color carpet pattern. Computer Engineering and Applications 2012,24(48), 172-176.
  • 15. H. Zhang. Research on segmentation algorithm of textile printing and dyeing image based on computer technology. Printing and Dyeing Auxiliaries 2018,8(35), 58-60.
  • 16. Sun Bo. Extraction of printed fabric pattern contour based on Canny Edge detection method. Printing and Dyeing Auxiliaries 2018,35(7), 31-33.
  • 17. Daoling Chen, Pengpeng Cheng, A method to extract batik fabric pattern and elements. The Journal of The Textile Institute 2020,112(7),1-7.
  • 18. Sundani D, Widiyanto S, Karyanti Y, et al. Identification of Image Edge Using Quantum Canny Edge Detection Algorithm. Journal of ICT Research and Applications 2019, 13(2),133-144.
  • 19. Hussain MA, Sheikh-Akbari A, Mporas I. Colour Constancy for Image of Non-Uniformly Lit Scenes. Sensors (Basel) 2019,19(10),2242.
  • 20. Hou SM, Jia CL, et al. A Study on Weak Edge Detection of COVID-19’s CT Images Based on Histogram Equalization and Improved Canny Algorithm. Computational and Mathematical methods in medicine 2021, 28(10),1-13.
  • 21. Mautz D, Ye W, Plant C, et al. Non-Redundant Subspace Clusterings with Nr-Kmeans and Nr-DipMeans. ACM Transactions on Knowledge Discovery from Data 2020, 14(5),1-24.
  • 22. Zhao, Y. P., and X. L. Zhou. K-means Clustering Algorithm and Its Improvement Research. Journal of Physics Conference Series 2021,1873(1),1-5.
  • 23. Arthur D, Vassilvitskii S. k-Means ++: The advantages of carefull seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposiumon Discrete algorithms. Society for Industrial and Applied Mathematics 2007, 11(6),1027-1035.
  • 24. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986,8(6),679-698.
  • 25. Jun Xiang, Jie Zhang, Ruru Pan, Yaobin Han, Jidong Zhang, Weidong Gao. Graphic contour extraction for printed fabric based on texture smoothing. Journal of Textile Research 2017,38(11), 162-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74297c1a-6aa0-49d6-87a0-c35edbfd2900
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.