PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of O3 and NO reacting in a tubular flow reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A process capable of NOx control by ozone injection gained wide attention as a possible alternative to proven post combustion technologies such as selective catalytic (and non-catalytic) reduction. The purpose of the work was to develop a numerical model of NO oxidation with O3 that would be capable of providing guidelines for process optimisation during different design stages. A Computational Fluid Dynamics code was used to simulate turbulent reacting flow. In order to reduce computation expense a 11-step global NO - O3 reaction mechanism was implemented into the code. Model performance was verified by the experiment in a tubular flow reactor for two injection nozzle configurations and for two O3/NO ratios of molar fluxe. The objective of this work was to estimate the applicability of a simplified homogeneous reaction mechanism in reactive turbulent flow simulation. Quantitative conformity was not completely satisfying for all examined cases, but the final effect of NO oxidation was predicted correctly at the reactor outlet.
Rocznik
Strony
361--373
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Wroclaw University of Technology, Institute of Heat Engineering and Fluid Mechanics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wroclaw University of Technology, Institute of Heat Engineering and Fluid Mechanics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wroclaw University of Technology, Institute of Heat Engineering and Fluid Mechanics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Chironna R.J., Altshuler B., 1999. Chemical aspects of NOx scrubbing. Pollut. Eng., 31, 32-36. Cooper C.D., Alley F.C., 1994. Air Pollution Control. 2nd edR, Waveland Press, Inc., Long Grove, Illinois.
  • 2. Dora J., Gostomczyk M.A., Jakubiak M., Kordylewski W., Mista W., Tkaczuk M. 2009. Parametric studies of the effectiveness of oxidation of NO by ozone. Chem. Process Eng., 30, 621–634.
  • 3. Ellison W., 2003. Chemical process design alternatives to gain simultaneous removal in scrubbers, POWER-GEN International. Las Vegas, USA, 9-11 December 2003.
  • 4. Głowiński J., Biskupski A., Słonka T., Tylus W., 2009. Absorption of nitrogen oxides at the final stage of ammonium nitrite production. Chem. Process Eng., 30, 217-229.
  • 5. GRI-Mech, 2012. http://www.me.berkeley.edu/gri-mech/
  • 6. Jakubiak M., Kordylewski W., 2010. Effectiveness of NOx removal from gas via preoxidation of NO with ozone and absorption in alkaline solutions. Chem. Process Eng., 31, 699-709.
  • 7. Jakubiak M., Kordylewski W., 2012. Pilot-scale studies on NOx removal from flue gas via NO ozonation and absorption into NaOH solution. Chem. Process Eng., 32, 229-239. DOI: 10.2478/v10176-012-0031-0.
  • 8. Jakubiak M., Kordylewski W., 2011. The effect of ozone feeding mode on the effectiveness of NO oxidation. Chem. Process Eng., 32, 229-239. DOI: 10.2478/v10176-011-0018-2.
  • 9. Jaroszyńska-Wolińska J., 2002. Ozone application to a two-stage NO removal from waste gases. Pol. J. Chem. Technol. 4, 5-7.
  • 10. Jaroszyńska-Wolińska J., 2009. Study of the reaction of nitrogen oxides with ozone generated in low-temperature plasma. Institute of Nuclear Chemistry And Technology, Warsaw, Poland (in Polish).
  • 11. Kee R.J, Coltrin M.E., Glarborg P., 2003. Chemically reacting flow. Theory and practice. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • 12. Launder B.E., Spalding D.B., 1974. The numerical computation of turbulent flows. Comp. Meth. Appl. Mech. Eng., 3. 269–289. 1974. DOI: 10.1016/0045-7825(74)90029-2.
  • 13. Launder B.E., Reece G.J., Rodi W., 1975. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537-566. DOI: 10.1017/S0022112075001814.
  • 14. Magnussen B.F., 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. Nineteeth AIAA Meeting, St. Louis.
  • 15. Mok Y.S., Lee H., 2006. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption reduction technique. Fuel Process. Technol., 87, 591-597. DOI: 10.1016/j.fuproc.2005.10.007.
  • 16. Nelo S.K., Leskela K.M., Sohlo J.J.K., 1997. Simultaneous oxidation of nitrogen oxide and sulfur dioxide with ozone and hydrogen peroxide. Chem. Eng. Technol., 20, 40-42. DOI: 10.1002/ceat.270200108.
  • 17. NIST, 2012. Chemical Kinetics Database, http://kinetics.nist.gov/kinetics/.
  • 18. Prather M.J., Logan J.A., 1994. Combustion’s impact on the global atmosphere. 25th Symposium. (International) on Combustion. Pittsburgh, USA, 31 July – 5 August 1994, 1513-1527.
  • 19. Puri I.K., 1995. The removal of NO by low-temperature O3 oxidation. Combust. Flame, 102, 512-518. DOI: 10.1016/0010-2180(95)00042-5.
  • 20. Skalska K., Miller J.S., Ledakowicz S., 2011a. Effectiveness of nitric oxide ozonation. Chem. Pap., 65, 193-197. DOI: 10.2478/s11696-010-0082-y.
  • 21. Skalska K., Miller J.S., Ledakowicz S., 2011b. Kinetic model of NOx ozonation and its experimental verification. Chem. Eng. Sci., 66, 3386-3391. DOI: 10.1016/j.ces.2011.01.028.
  • 22. Smoot L.D., 1993. Fundamentals in coal combustion for clean and efficient use. Elsevier, New York.
  • 23. Spalding D.B., 1976. Development of the eddy-break-up model of turbulent combustion. Proc. Combust. Inst. 16, 1657–1663.
  • 24. Van Doormaal J.P., Raithby G.D., 1984. Enhancements of the SIMPLE methods for predicting incompressible fluid flows. Num. Heat Transfer, 7, 147-163 DOI: 10.1080/01495728408961817.
  • 25. Wang Z., Zhou J., Fan J., Cen K., 2006. Direct numerical simulation of ozone injection technology for NOx control in flue gas. Energy Fuel., 20, 2432-2438. DOI: 10.1021/ef0603176.
  • 26. Wang Z., Zhou J., Zhu Y., Wen Z., Liu J., Cen K., 2007. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Process. Technol., 88, 817-823. DOI: 10.1016/j.fuproc.2007.04.001.
  • 27. Warnatz J., Maas U., Dibble R., 2006. Combustion. Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation., 4th ed., Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74273353-cc6f-446c-aa31-ea8978dff822
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.