PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Schmidt hammer exposure dating for brick masonry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research investigates the validity of the Schmidt hammer exposure dating (SHED) technique as a complementary means to date monuments according to the evaluation of the brick decay from masonry exposed to climatic conditions. The degree of surface weathering, I5 (%) is calculated as an indicator of the ageing effect and compared to the absolute age of the churches constructed between 1600 and 1795. This paper discusses the results obtained with such a method and the use of the technique within the framework of historical research. Tests were done on exterior church walls built between the 17th and 19th centuries. All the churches were located within the limited geographical area of Hainaut, in the south of Belgium. Results indicate that SHED provides encouraging results for buildings constructed between 1790 and 1895, with a linear correlation (R2>0.8) between surface weathering of brick façades and their ages. However, the weathering indices show high variability of values for the period 1750−1790, which may confirm that the variable qualities of bricks were in use during this period of time because of the different production techniques. As such, the results highlight the probable influence of the entire manufacturing and construction process and technical improvements in traditional brick-making.
Wydawca
Czasopismo
Rocznik
Strony
54--62
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Faculty of Engineering, Architectural and Urban Engineering Unit, University of Mons, 53 rue du Joncquois, B7000 Mons, Belgium
Bibliografia
  • 1. Amaral, PM, Rosa, LG, and Fernandes, JC, 1999. Determination of Schmidt rebound hardness consistency in granite. International Journal of Rock Mechanics and Mining Sciences 36: 833−837, DOI: 10.1016/S0148-9062(99)00040-6.
  • 2. Aydin, A and Basu, A, 2005. The Schmidt hammer in rock material characterization. Engineering Geology 81: 1−14. DOI: 10.1016/j.enggeo.2005.06.006.
  • 3. Aydin, A, 2009. ISRM Suggested method for determination of the Schmidt hammer rebound hardness: Revised version. International Journal of Rock Mechanics and Mining Sciences 46(3): 627−634, DOI: 10.1016/j. ijrmms.2008.01.020.
  • 4. Betts, MW and Latta, MA, 2000. Rock surface hardness as an indication of exposure age: an archeological application of the Schmidt hammer. Archaeometry 42(1): 209−223. DOI: 10.1111/j.1475-4754.2000.tb00877.x.
  • 5. Brozovsky, J, Zach, J, and Brozovsky, JJr, 2008. Determining the strength of solid burnt bricks in historical structures. 9th International Conference on NDT of Art, Jerusalem, Israel, May 25−30.
  • 6. Cultrone, G., Sebastian, E, Elert, K, de la Torre, MJ, Cazalla, O, and Rodriguez-Navarro, C. 2004. Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society 24: 547−564, DOI: 10.1016/S0955- 2219(03)00249-8.
  • 7. Day, MJ, 1980. Rock hardness: field assessment and geomorphic importance. Professional Geographer 32(1): 72−81. DOI: 10.1111/j.0033-0124.1980.00072.x.
  • 8. Debailleux, L, 2018. Schmidt hammer rebound hardness tests for the characterization of ancient fired clay bricks. International Journal of Architectural Heritage 13(2): 288−297. DOI: 10.1080/15583058.2018.1436204.
  • 9. De Puy, GW, 1965. Petrographic investigations of rock durability and comparisons of various test procedures. Engineering Geology 2(2): 31−46.
  • 10. Elert, K, Cultrone, G, Navarro, CR, and Pardo, ES, 2003. Durability of bricks used in the conservation of historic buildings. Influence of composition and microstructure. Journal of Cultural Heritage 4: 91−99, DOI: 10.1016/S1296-2074(03)00020-7.
  • 11. Fort, R, Alvarez de Buergo, M, and Perez-Monserrat, EM, 2013. Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. International Journal of Rock Mechanics and Mining Sciences 61: 296−305, DOI: 10.1016/j.ijrmms.2012.12.048.
  • 12. Guglielmin, M, Worland, M.R, Convey, P, and Cannone, N, 2012. Schmidt Hammer studies in the maritime Antarctic: Application to dating Holocene deglaciation and estimating the effects of macro lichens on rock weathering. Geomorphology 155−156: 34−44, DOI: 10.1016/j.geomorph.2011.12.015.
  • 13. Hoehne, R, 1910. The modern way of burning brick. Clay Record 37(5): 21−22.
  • 14. Iqbal, M, 2016. Diagnostic approach for quantifying the soiling level and the aging of limestone façade. Journal of Building engineering 7: 292−299, DOI: 10.1016/j.jobe.2016.07.008.
  • 15. Laefer, DF, 2001. Prediction and assessment of ground movement and building damage induced by adjacent excavation. Ph.D. diss., Urbana, University of Illinois; pp. 803.
  • 16. Laefer, DF, 2004. Emergence, development and prevalence of brick noggin in American vernacular structures. 4th International Seminar on Structural Analysis of Historical Constructions, Padova, Italy, November 10−13.
  • 17. Laefer, DF, Boggs, J, and Cooper, N, 2004. Engineering properties of historic brick: variability considerations as a stationary versus nonstationary kiln types. Journal of the American Institute for Conservation 43(3): 255−272.
  • 18. Matthews, JA, Owen, G, Winkler, S, Vater, AE, Wilson, P, Mourne, RW, and Hill, JL, 2016. A rock-surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in Southern Norway. Catena 143: 35−44, DOI: 10.1016/j.catena.2016.03.018.
  • 19. Matysek, P, and Latka, D, 2012. Comments on the application of the sclerometric method in the diagnostics of brick masonry. 8th International Conference on Structural Analysis of Historical Constructions, Wroclaw, Poland, October 15−17.
  • 20. McCarroll, D, 1994. The Schmidt Hammer as a measure of degree of rock surface weathering and terrain age. In Beck, C. (Ed.), Dating in exposed and surface contexts. University of New Mexico Press, Albuquerque: 29−45.
  • 21. Owen, G, Matthews, JA, and Albert, P, 2007. Rates of Holocene chemical weathering, “Little Ice Age” glacial erosion and implications for Schmidt-hammer dating at a glacier-foreland boundary, Fabergstolsbreen, southern Norway. The Holocene 17(6): 829−834, DOI: 10.1177/0959683607081419.
  • 22. Perez-Monserrat, EM, Agua, F, Fort, R, Alvarez de Buergo, MA, Conde, JF, and García-Heras, M, 2017. Effect of manufacturing methods on the decay of ceramic materials: A case study of bricks in modern architecture of Madrid (Spain). Applied Clay Science 135: 136−149, DOI: 10.1016/j.clay.2016.09.015.
  • 23. Pope, G, Meierding, TC, and Paradise, TR, 2002. Geomorphology’s role in the study of weathering of cultural stone. Geomorphology 47(2): 211−225, DOI: 10.1016/S0169-555X(02)00098-3.
  • 24. Rhodes, D. 1968. Kilns: design, construction and operation. London. Chilton Book Company: pp. 291.
  • 25. Roknuzzaman, M, Hossain, MB, Mostazid, MI, and Haque, MR, 2017. Application of rebound hammer method for estimating compressive strength of bricks. Journal of Civil Engineering Research 7(3): 99−104, DOI: 10.5923/j.jce.20170703.02.
  • 26. Sachpazis, CI, 1990. Correlating Schmidt hardness with compressive strength and young’s modulus of carbonate rocks. Bulletin of Engineering Geology and Environment 42(1): 75−83.
  • 27. Sanchez, K, and Tarranza, N, 2014. Reliability of rebound hammer test in concrete compressive strength estimation. International Journal of Advances in Agricultural and Environmental Engineering 1(2): 198−202.
  • 28. Sanjurjo, J, Mosquera, D, and Vidal-Romani, JR, 2009. Assessing the age-weathering correspondence of cosmogenic 21Ne dated Pleistocene surfaces by the Schmidt hammer. Earth Surface Processes and Landforms 34: 1121–1125, DOI: 10.1002/esp.1802.
  • 29. Schueremans, L, Cizer, Ö, Janssens, E, Serré, G, and Van Balen, K, 2011. Characterization of repair mortars for the assessment of their compatibility in restoration projects. Research and practice 25: 4338−4350.
  • 30. Shakesby, RA, Matthews, JA, and Owen, G, 2006. The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quaternary Science Reviews 25: 2846−2867.
  • 31. Sharma, PK, Khandelwal, M, and Singh, TN, 2011. A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. International Journal of Earth Science 100(1): 189−195.
  • 32. Stahl, T, Winkler, S, Quigley, M, Bebbington, M, Duffy, B, and Duke, D, 2013. Schmidt hammer exposure‐age dating (SHD) of late Quaternary fluvial terraces in New Zealand. Earth surface processes and landforms 38(18): 1838−1850, DOI: 10.1002/esp.3427.
  • 33. Stella, G, Fontana, D, Gueli, AM, and Troja, SO, 2014. Different approaches to date bricks from historical buildings. Geochronometria 41(3): 256−264, DOI: 10.2478/s13386-013- 0157-y.
  • 34. Tomkins, MD, Dortch, JM, and Hughes, PD, 2016. Schmidt Hammer exposure dating (SHED): Establishment and implications for the retreat of the last British Ice Sheet. Quaternary Geochronology 33: 46−60, DOI: 10.1016/j.quageo.2016.02.002.
  • 35. Tomkins, MD, Huck, JJ, Dortch, JD, Hughes, PD, Kirkbride, MP, and Barr, ID, 2018. Schmidt Hammer exposure dating (SHED): Calibration procedures, new exposure age data and online calculator. Quaternary Geochronology 44: 55−62, DOI: 10.1016/j.quageo.2017.12.003.
  • 36. Winkler, S, 2005. The Schmidt hammer as a relative-age dating technique: potential and limitations of its application on Holocene moraines, Mt. Cook National Park, Southern Alps, New Zealand. Journal of Geology and Geophysics 48: 105−116, DOI: 10.1080/00288306.2005.9515102.
  • 37. Yasar, E, and Erdogan, Y, 2004. Estimation of rock physico mechanical properties using hardness methods. Engineering Geology 71(3): 281−288, DOI: 10.1016/S0013-7952(03)00141-8.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74269cc4-5ddb-403a-9fff-c09b861b041e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.