Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to present the influence of bee pollen on the physicochemical and in vitro properties of poly(acrylic acid) (PAA) hydrogel composites enriched with hydroxyapatite and modified with bee pollen as a prospective material for biomedical application with beneficial features including good osseointegration and anti-inflammatory effect. The phase and chemical composition of hydroxyapatite synthesized by wet-precipitation method was confirmed by means of X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Proposed materials were investigated towards in vitro properties by immersion in the incubation fluids including artificial saliva, Ringer’s solution and distilled water. The composites swelling ability was determined. Additionally, the chemical structure of the polymer matrix composites was confirmed by FT-IR method. Moreover, to characterize composite degradation process during 21-day incubation the FT-IR technique was used. In order to describe bee pollen feature, both scanning electron microscopy and X-ray fluorescence spectrometry were used. Presented research revealed that hydroxyapatite, as well as PAA undergo biodegradation during in vitro test. Moreover, matrices degradation results in incubation fluids pH decrease associated with anionic nature of PAA which is further enhanced by bee pollen release. The strongest pH drop effect was observed for Ringer’s solution. Increase in conductivity of distilled water confirmed composites degradation process.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
8--14
Opis fizyczny
Bibliogr. 40 poz., rys., tab., zdj.
Twórcy
autor
- Institute of Inorganic Chemistry and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
autor
- Institute of Inorganic Chemistry and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
autor
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
Bibliografia
- [1] Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D.S.: Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science 2011 (2011) 1-19.
- [2] Wu M., Bao B., Yoshii F., Makuuchi K.: Irradiation of Crosslinked, Poly(Vinyl Alcohol) Blended Hydrogel for Wound Dressing. Journal of Radioanalytical and Nuclear Chemistry 250 (2001) 391-395.
- [3] Bakó J., Vecsernyés M., Ujhelyi Z., Kovácsné I.B., Borbíró I., Bíró T., Borbély J., Hegedűs C.: Composition and characterization of in situ usable light cured dental drug delivery hydrogel system. Journal of Materials Science: Materials in Medicine 24 (2013) 659-666.
- [4] Wang Q.Q., Kong M., An Y., Liu Y., Li J.J., Zhou X., Feng C., Li J., Jiang S.Y., Cheng X.J.: Hydroxybutyl chitosan thermo-sensitive hydrogel: a potential drug delivery system. Journal of Materials Science 48 (2013) 5614-5623.
- [5] Huang K.T., Huang C.J.: 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering IFMBE Proceedings 47:35 (2015)
- [6] Smith T.J., Kennedy J.E.: Rheological and thermal characteristics of a two phase hydrogel system for potential wound healing application. Journal of Materials Science 45 (2010) 2884-2891.
- [7] Pietrucha K., Verne S.: Synthesis and Characterization of a New Generation of Hydrogels for Biomedical Applications. World Congress on Medical Physics and Biomedical Engineering Munich, Germany (2009) 1-4.
- [8] Schmedlen R.H., Masters K.S., West J.L.: Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23 (2002) 4325-4332.
- [9] Du H., Liu M., Yang X., Zhai G.: The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov Today 20 (2015) 1004-1011.
- [10] Giri T.K., Thakur A., Alexander A., Ajazuddin, Badwaik H., Tripathi D.K.: Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharmaceutica Sinica B 2 5 (2012) 439-449.
- [11] Hong Z., Song Y., Gong Y., Mao Z., Gao C., Shen J.: Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation. Acta Biomaterialia 3 (2007) 23-31.
- [12] Tseng H., Puperi D.S., Kim E.J., Ayoub S., Shah J.V., Cuchiara M.L., West J.L., Grande-Allen K.J.: Anisotropic poly (ethylene glycol)/ polycaprolactone hydrogel-fiber composites for heart valve tissue engineering 20 (2014) 2634-2645.
- [13] Parlato M., Reichert S., Barney N., Murphy W.L.: Poly(ethylene glycol) hydrogels with adaptable mechanical and degradation properties for use in biomedical applications. Macromolecular Bioscience 14 (2014) 687-698.
- [14] Nakata R., Tachibana A., Tanabe T.: Preparation of keratin hydrogel/hydroxyapatite composite and its evaluation as a controlled drug release carrier. Materials Science and Engineering: C 41 (2014) 59-64.
- [15] Nho Y.C., Park J.S., Lim Y.M.: Preparation of Poly(acrylic acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives. Polymers 6 (2014) 890-898.
- [16] Ahn J.S., Choi H.K., Cho C.S.: A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan. Biomaterials 22 (2001) 923-928.
- [17] Hu H., Wang H., Du Q.: Preparation of pH-sensitive polyacrylic acid hollow microspheres and their release properties. Soft Matter 8 (2012) 6816-6822.
- [18] Almeida H., Amaral M.H., Lobão P.: Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. Journal of Applied Pharmaceutical Science 02 (2012) 1-10. [19] Bajpai A.K., Shukla S.K., Bhanu S., Kankane S.: Responsive polymers in controlled drug delivery. Progress in Polymer Science 33 (2008) 1088-1118.
- [20] Mohammad Z.M., Kourosh K.: Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal 17 (2008) 451-477.
- [21] Kim D., Lee E., Lee H.S., Yoon Y.: Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide. Scientific Reports – Nature 5 (2015) 7646.
- [22] Yang Z., Cao Z., Sun H., Li Y.: Composite Films Based on Aligned Carbon Nanotube Arrays and a Poly(N-Isopropyl Acrylamide) Hydrogel. Advanced Materials 20 (2008) 2201-2205.
- [23] Strong L.E., Dahotre S.N., West J.L.: Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. Journal of Controlled Release 178 (2014) 63-68.
- [24] Fu S., Ni P., Wang B., Chu B., Zheng L., Luo F., Luo J., Qian Z.: Injectable and Thermo-Sensitive PEG-PCL-PEG Copolymer/ collagen/n-HA Hydrogel Composite for Guided Bone Regeneration. Biomaterials 33 (2012) 4801-4809.
- [25] Holloway J.L., Lowman A.M., VanLandingham M.R., Palmese G.R.: Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications. Acta Biomaterialia 10 (2014) 3581-3589.
- [26] Golas P.L., Matyjaszewski K.: Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chemical Society Reviews 39 (2010) 1338-1354.
- [27] Kopeček J.: Hydrogel biomaterials: a smart future? Biomaterials 28 (2007) 5185-5192.
- [28] Kutikov A.B., Skelly J.D., Ayers D.C., Song J.: Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds. ACS Applied Materials & Interfaces 7 (2015) 4890-4901.
- [29] Turco G., Marsich E., Bellomo F., Semeraro S., Donati I., Brun F., Grandolfo M., Accardo A., Paoletti S.: Alginate/Hydroxyapatite Biocomposite For Bone Ingrowth: A Trabecular Structure With High And Isotropic Connectivity. Biomacromolecules 10 (2009) 1575-1583.
- [30] Li Z., Su Y., Xie B., Wang H., Wen T., He C., Shen H., Wu D., Wang D.: A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. Journal of Materials Chemistry B 1 (2013) 1755-1764.
- [31] Kikuchi M., Ikoma T., Itoh S., Matsumoto H.N., Koyama Y., Takakuda K., Shinomiya K., Tanaka J.: Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology 64 (2004) 819-825.
- [32] Kobayashi H., Kato M., Taguchi T., Ikoma T., Miyashita H., Shimmura S., Tsubota K. Tanaka J.: Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Materials Science and Engineering: C 24 (2004) 729-735.
- [33] Wu G., Su B., Zhang W., Wang C.: In vitro behaviors of hydroxyapatite reinforced polyvinyl alcohol hydrogel composite. Materials Chemistry and Physics 107 (2008) 364-369.
- [34] Pola M., Okoń K., Przybyło R., Frasik W.: Cardioprotective properties of hydrophilic pollen extract (HPE). Journal of Pathology 49 (1998) 109-112.
- [35] Asafova N., Orlov B., Kozin R.: Physiologically Active Bee Products (2001)
- [36] Pascoal A., Rodrigues S., Teixeira A., et al.: Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology 63 (2014) 233-239.
- [37] Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Journal of Biomedical Materials Research 24 (1990) 721-734.
- [38] Tyliszczak B., Walczyk D., Wilczyński S.: Acrylic hydrogels modified with bee pollen for biomedical applications. Journal of Applied Pharmaceutical Science 5 (2015) 010-014.
- [39] Raynaund S., Champion E., Lafon J. P., Bernache – Assollant D.: Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23 (2002) 1065-1072.
- [40] ISO 10271:2001
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7424ac5b-f902-42d4-88a0-c356095b6fb8