PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical solution of three dimensional unsteady biomagnetic flow and heat transfer through stretching/shrinking sheet using temperature dependent magnetization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of biomagnetic fluid flow and heat transfer in the three-dimensional unsteady stretching/shrinking sheet is examined. Our model is the version of biomagnetic fluid dynamics (BFD) which is consistent with the principles of ferrohydrodynamics (FHD). Our main contribution is the study of the three dimensional time dependent BFD flow which has not been considered yet to our best knowledge. The physical problem is described by a coupled, nonlinear system of ordinary differential equations subject to appropriate boundary conditions. The solution is obtained numerically by applying an effcient numerical technique based on the fnite difference method. Computations are performed for a wide range of the governing parameters such as ferromagnetic interaction parameter, unsteadiness parameter, stretching parameter and other involved parameters. The effect of these parameters on the velocity and temperature fields are examined. We observed that for the decelerated flow, the velocity profile overlap with the increasing unsteadiness parameter and we also found that the skin friction coefficient is decreased for a shrinking sheet whereas, opposite behavior is shown for the stretching sheet. We also monitored the rate of the heat transfer coefficient with the ferromagnetic interaction parameter and showed opposite behavior for stretching and shrinking sheets. Our results are also compared for specific values of the parameters with others documented in literature.
Rocznik
Strony
161--185
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Research Group of Fluid Flow Modeling and Simulation Department of Applied Mathematics University of Dhaka Dhaka-1000, Bangladesh
  • Fluid Dynamics & Turbomachinery Laboratory Department of Mechanical Engineering Technological Educational Institute of Western Greece 1 M. Aleksandrou St. Koukouli, 26334 Patras, Greece
autor
  • Research Group of Fluid Flow Modeling and Simulation Department of Applied Mathematics University of Dhaka Dhaka-1000, Bangladesh
Bibliografia
  • 1. A.N. Ruesetski, E.K. Ruuge, Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field, Journal of Magnetism and Magnetic Materials, 122, 335–339. 1993.
  • 2. M. Lauva, J. Plavins, Study of colloidal magnetite binding erythrocytes: prospects for cell separation, Journal of Magnetism and Magnetic Materials, 122, 349–353, 1993.
  • 3. Y. Haik, V. Pai, C.J. Chen, Development of magnetic device for cell separation, Journal of Magnetism and Magnetic Materials, 194, 254–261, 1999.
  • 4. H.I. Andersson, O.A. Vanles, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mechanica 128, 39–47, 1998.
  • 5. T. Yasmeen, T. Hayer, M.I. Khan, M. Imtiaz, A. Alsaedi, Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions, Journal of Molecular liquids, 223, 1000–1005, 2016.
  • 6. A. Zeeshan, A. Majeed, R. Ellahi, Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation, Journal of Molecular Liquids, 215, 549–554, 2016.
  • 7. A. Majeed, A. Zeeshan, R. Ellahi, Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux, Journal of Molecular Liquids, 223, 528–533, 2016.
  • 8. A. Zeeshan, A. Majeed, C. Fetecau, S. Muhammad, Effects on heat transfer of multiphase magnetic fluid due to circular magnetic field over a stretching surface with heat source/sink and thermal radiation, Results in Physics, 7, 3353–3360, 2017.
  • 9. A. Majeed, A. Zeeshan, R. Ellahi, Chemical reaction and heat transfer on boundary layer Maxwell Ferro-fluid flow under magnetic dipole with Soret and suction effects, Engineering Science and Technology, an International Journal, 20, 1122–1128, 2017.
  • 10. M.M. Bhatti, M. Sheikoleslami, A. Zeeshan, Entropy analysis on electro-kinetically modulated peristaltic propulsion of magnetized nanofluid flow through a microchannel, Entropy, 19, 481, 2017.
  • 11. Y. Haik, V. Pai, C.J. Chen, Biomagnetic Fluid Dynamics, in Fluid Dynamics at Interfaces, W. Shyy and R. Narayanan [Eds.], Cambridge University Press, Cambridge, 439–452, 1999.
  • 12. R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, 1985.
  • 13. E.E. Tzirtzilakis, A mathematical model for blood flow in magnetic field, Physics of Fluids, 17, (7), 077103–771018, 2005.
  • 14. E.E. Tzirtzilakis, n.g. kafoussias, Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization, Journal of Applied Mathematics and Physics, 54, 551–565, 2003.
  • 15. I.M. Eldesoky, Mathematical analysis of unsteady MHD blood flow through parallel plate channel with heat source, World Journal of Mechanics, 2, 131–137, 2012.
  • 16. J.C. Misra, A. Sinha, Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion, Heat Mass Transfer, 49, 617–628, 2013.
  • 17. E.E. Tzirtzilakis, N.G. Kafoussias, Three dimensional magnetic fluid boundary layer flow over a linearly stretching sheet, Journal of Heat Transfer, 132, 011702-1-8, 2010.
  • 18. J. Singh, R. Rathee, Analytical solution of two -dimensional model of blood flow with variable viscosity through an indented artery due to LDL effect in the presence of magnetic field, International Journal of Physical Sciences, 5, 12, 1857–1868, 2010.
  • 19. K. Das, G.C. Saha, Arterial MHD pulsatile flow of blood under periodic body acceleration, Bulletin of Society of Mathematicians Banja Luka, 16, 21–42, 2009.
  • 20. C.S. Dulal, b. ananda, Pulsatile motion of blood through an axi-symmetric artery in presence of magnetic field, Journal of Science and Technology of Assam University, 5, 2, 12–20, 2010.
  • 21. M. Ali, F. Ahmad, S. Hussain, Analytical solution of unsteady mhd blood flow and heat transfer through parallel plates when lower plate stretches exponentially, Journal of Applied Environmental and Biological Sciences, 5, 1–8, 2015.
  • 22. N. Bachok, A. Ishak, I. Pop, Unsteady boundary layer flow and heat transfer of a nonofluid over a permeable stretching/shrinking sheet, International Journal of Heat and Mass Transfer, 55, 2102–2109, 2012.
  • 23. T.G. Fang, J. Zhang, S.S. Yao, Viscous flow over an unsteady shrinking sheet with mass transfer, Chinese Physics Letter, 26, 014703, 2009.
  • 24. M.M. Bhatti, M.M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet, Journal of Molecular Liquids, 221, 567–573, 2016.
  • 25. M.M. Bhatti, M.M. Rashidi, Entropy generation with nonlinear thermal radiation in MHD boundary layer flow over a permeable shrinking/stretching sheet: numerical solution, Journal of Nanofluids, 5, 4, 543–548, 2016.
  • 26. M.M. Bhatti, M.A. Abbas, M.M. Rashidi, A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD, Applied Mathematics and Computation, 316, 381–389, 2018.
  • 27. B.S. Dandapat, S.N. Singh, R.P. Singh, Heat transfer due to permeable stretching. Wall in presence of transverse magnetic field, Archives of Mechanics, 56, (2), 87–101, 2004.
  • 28. D. Nikodijevic, V. Nikolic, Z. Stamenkovic, A. Boricic, Parametric method for unsteady two-dimensional MHD boundary-layer on a body for which temperature varies with time, Archives of Mechanics, 63, (1), 57–76, 2011.
  • 29. A. Majeed, A. Zeeshan, T. Hayat, Analysis of magnetic properties of nanoparticles due to applied magnetic dipole in aqueous medium with momentum slip condition. Neural Computing and Applications, DOI 10.1007/s00521-017-2989-5, 1–9, 2017.
  • 30. S.R. Mishra, P.K. Pattnaik, M.M. Bhatti, T. Abbas, Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet, Indian Journal of Physics, 91, 1219–1227, 2017.
  • 31. M. Sheikoleslami, M.M. Bhatti, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles, International Journal of Heat and Mass Transfer, 111, 1039–1049, 2017.
  • 32. M. Hassan, A. Zeeshan, A. Majeed, R. Ellahi, Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field, Journal of Magnetism and Magnetic Materials, 443, 36–44, 2017.
  • 33. Y. Haik, V. Pai, C.J. Chen, Apparent viscosity of human blood in a high static magnetic field, Journal of Magnetism and Magnetic Materials, 225, 180, 2001.
  • 34. H. Matsuki, K. Yamasawa, K. Murakami, Experimental considerations on a new automatic cooling device using temperature sensitive magnetic fluid, IEEE Transactions on Magnetics, 13, 1143, 1977.
  • 35. N.G. Kafoussias, E.W. Williams, An improved approximation technique to obtain numerical solution of a class of two-point boundary value similarity problems in fluid mechanics, International Journal for Numerical Methods in Fluids, 17, 145–162, 1999.
  • 36. E.E. Tzirtzilakis, M.A. Xenos, Biomagnetic fluid flow in a driven cavity, Meccanica, 48, 187–200, 2013.
  • 37. M.G. Murtaza, E.E. Tzirtzilakis, M. Ferdows, Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet, Journal of Applied Mathematics and Physics, 68, 93, 2017.
  • 38. V.C. Loukopoulos, E.E. Tzirtzilakis, Biomagnetic channel flow in spatially varying magnetic field, International Journal of Engineering Science, 42, 571–590, 2004.
  • 39. E.E. Tzirtzilakis, A simple numerical methodology for BFD problems using stream function vorticity formulation, Communications in Numerical Methods in Engineering, 24, 683–700, 2008.
  • 40. H.E.M. Hafizuddin, H. Nazar, N.M. Arifin, I. Pop, Three-dimensional viscous flow over an unsteady permeable stretching/shrinking sheet, Proceedings of the 3rd International Conference on Mathematical Sciences, AIP Conference Proceedings, 1602, 422–428, 2014.
  • 41. S. Devi, H.S. Takhar, G. Nath, Unsteady, three-dimensional, boundary-layer flow due to a stretching surface, International Journal of Heat and Mass Transfer, 29, 1996–1999, 1986.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-741979b7-d896-43b6-85be-60662b3d535e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.