PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Hole-Forming Technology on the Destruction of Material DD11 Used to Manufacture Wheel Discs

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ technologii formowania otworów na destrukcję
Języki publikacji
EN
Abstrakty
EN
This study presents the results of comparative tests concerning the destruction process of specimens made of material DD11, for which different hole-forming technologies (i.e. drilling and piercing) were applied. For the analysis of cross-sectional properties of a specimen in the process of destruction, relative vibrations of the specimen’s free end as a function of vibrations of a forcing mechanism (vibration inductor) were selected as the diagnostic signal. The tests were carried out on a test stand on which the destruction process of the material’s cross-section was induced by the specimen’s inertial force. Based on the conducted testing, it was found that the average value of cycles to damage a specimen with holes made using the drilling technique were more durable than the specimens with holes made using the piercing method.
PL
W pracy przedstawiono wyniki badań porównawczych procesu destrukcji próbek wykonanych z materiału DD11, dla których zastosowano różne technologie formowania otworów w postaci wiercenia i wykrawania. Do analizy właściwości przekroju próbki w procesie destrukcji jako sygnał diagnostycznych wybrano drgania względne swobodnego końca próbki w funkcji drgań mechanizmu wymuszającego (wzbudnika drgań). Badania przeprowadzono na oryginalnym stanowisku badawczym, w którym proces destrukcji przekroju materiału wywoływany jest przez siłę bezwładności próbki. Na podstawie przeprowadzonych badań można zauważyć, że próbki z otworami wykonanymi techniką wiercenia charakteryzują się większą trwałością w stosunku do próbek, w których otwory wykonano metodą wykrawania.
Czasopismo
Rocznik
Tom
Strony
113--121
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, ul. M. Oczapowskiego 11, 10-736 Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, ul. M. Oczapowskiego 11, 10-736 Olsztyn, Poland
autor
  • POLKAR Warmia Sp. z o.o. ul. Elbląska 3, 14-420 Mlynary, Poland
Bibliografia
  • 1. Firat M., et al.: Numerical modelling and simulation of wheel radial fatigue tests. Engineering Failure Analysis 16.5 (2009)
  • 2. Elvik R., et al., eds.: The handbook of road safety measures. Emerald Group Publishing Limited, 2009.
  • 3. Burdzik R., Sadowski A.: Przegląd metod badania kół tarczowych w pojazdach samochodowych. Prace Naukowe Politechniki Warszawskiej. Z. 112 Transport. 2016.
  • 4. Dreher R. C.: An Airborne Indicator for Measuring Vertical Velocity of Airplanes at Wheel Contact. National Advisory Committee for Aeronautics, 1953.
  • 5. Hohmann R. et al.: Aircraft wheel testing with machine-cooled HTS SQUID gradiometer system. IEEE transactions on applied superconductivity 9.2 (1999), pp. 3801–3804.
  • 6. Kosec B., Kovacic G., Kosec L.: Fatigue cracking of an aircraft wheel. Engineering Failure Analysis 9.5 (2002), pp. 603–609.
  • 7. Kappes W., et al.: Non-destructive testing of wheel-sets as a contribution to safety of rail traffic. CORENDE 2000 Proceedings (2000).
  • 8. Kappes W., et al.: Application of new front-end electronics for non-destructive testing of railroad wheel sets. Insight-Non-Destructive Testing and Condition Monitoring 49.6 (2007), pp. 345–349.
  • 9. Joshi Anjali, Mats PE Heimdahl: Model-based safety analysis of simulink models using SCADE design verifier. International Conference on Computer Safety, Reliability, and Security. Springer Berlin Heidelberg, 2005.
  • 10. Mutton P. J., Lynch M. R.: Improving the safety of railway wheels through non-destructive measurement of residual stresses. CORE 2004: New Horizons for Rail (2004): 25.
  • 11. Diener M., Ghidini A.: Reliability and safety in railway products: fracture mechanics on railway solid wheels; a challenge for appliers and producers. Lucchini RS, 2008.
  • 12. Carboni M., Beretta S., Finzi A.: Defects and in-service fatigue life of truck wheels, Engineering Failure Analysis 10 (2003), pp. 45–57.
  • 13. McGrath P. J., et al.: Effects of forming process on fatigue performance of wheel centre discs. ECF13, San Sebastian 2000. 2013.
  • 14. McGrath P. J.: An investigation of residual stresses induced by forming processes on the fatigue resistance of automotive wheels. (2001).
  • 15. Prajapati D. R., Satsangi P., Daman Vir Singh Cheema: Taguchi approach to optimize the bad fusion defect of wheel rim industry: A case study. International Journal of Management, IT and Engineering 3.9 (2013): 121.
  • 16. Wali M., Ahnaf Usman Zillohu: Failure of Wheels Due to Improper Manufacturing Process. Journal of failure analysis and prevention 10.5 (2010), pp. 387–392.
  • 17. Zhanguang, Zheng, Shuai Yuan, Teng Sun, Shuqin Pan, Fractographic study of fatigue cracks in a steel car wheel, Engineering Failure Analysis 47 (2015), pp. 199–207.
  • 18. Drożyner P., Rychlik A.: The use of fatigue tests in the manufacture of automotive steel wheels. Materials Science and Engineering 145 (2016), DOI:10.1088/1757-899X/145/2/022033.
  • 19. Rychlik A., Kozubel W.: A method of fatigue strength testing of wheel rim fragments at the production process stage. Journal of KONES Powertrain and Transport, Vol. 23, No. 1 2016, pp. 289–296. ISSN: 1231-4005 e-ISSN: 2354-0133 DOI:10.5604/12314005.1213506.
  • 20. Rychlik A., Ligier K.: Fatigue crack detection method using analysis of vibration signal. Technical Sciences 20(1)2017.
  • 21. Rychlik A., Ligier K., Kozubel W.: Identification of fatigue damage of metal sheet made of material DD11 from an analysis of a vibration signal. Tribologia 6/2017, pp. 87–93.
  • 22. Białkowski P., Krężel B.: Early detection of cracks in rear suspension beam with the use of time domain estimates of vibration during the fatigue testing. DIAGNOSTYKA, Vol. 16, No. 4 (2015), pp. 55–62.
  • 23. Broda D., Klepka A., Staszewski W. J., Scarpa F.: Nonlinear Acoustics in Non-destructive Testing – from Theory to Experimental Application. Key Engineering Materials. 2014, Vol. 588, pp. 192–201.
  • 24. Byung Kwan Oh, Se Woon Choi, Hyo Seon Park1: Damage Detection Technique for Cold-Formed Steel Beam Structure Based on NSGA-II. Shock and Vibration. Volume 2015 (2015), Article ID 354564.
  • 25. Jassim Z. A., Ali N. N., Mustapha F., Abdul Jalil N. A.: A review on the vibration analysis for a damage occurrence of a cantilever beam. Engineering Failure Analysis 31 (2013), pp. 442–461.
  • 26. Klepka A., Pieczonka L., Staszewski W. J., Aymerich F.: Impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations. Composites: Part B 65 (2014), pp. 99–108.
  • 27. Qingsong Xu: Impact detection and location for a plate structure using least squares support vector machines. Structural Health Monitoring 2014, Vol. 13(1), pp. 5–18.
  • 28. Tao Jinniu, Feng Yongming, Tang Kezhong: Fatigue crack detection for a structural hotspot. Journal of Measurements in Engineering, Vol. 2, Issue 1, 2014, pp. 49–56.
  • 29. Trochidis A., Hadjileontiadis L., Zacharias K.: Analysis of vibroacoustic modulations for crack detection: A Time- Frequency Approach Based on Zhao-Atlas-Marks Distribution. Hindawi Publishing Corporation, Shock and Vibration, Volume 2014, Article ID 102157.
  • 30. Trojniar T., Klepka A., Pieczonka L., Staszewski W. J.: Fatigue crack detection using nonlinear vibro-acoustic cross-modulations based on the Luxemburg-Gorky effect. Health Monitoring of Structural and Biological Systems (2014).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7417dec6-8de9-4179-8942-d24816d9af54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.