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Abstract: This paper presents an effective method of network overload management in 
power systems. The three competing objectives 1) generation cost 2) transmission line 
overload and 3) real power loss are optimized to provide pareto-optimal solutions. A fuz-
zy ranking based non-dominated sorting genetic algorithm-II (NSGA-II) is used to solve 
this complex nonlinear optimization problem. The minimization of competing objectives 
is done by generation rescheduling. Fuzzy ranking method is employed to extract the best 
compromise solution out of the available non-dominated solutions depending upon its 
highest rank. N-1 contingency analysis is carried out to identify the most severe lines and 
those lines are selected for outage. The effectiveness of the proposed approach is de-
monstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with 
smooth cost functions and their results are compared with other single objective evo-
lutionary algorithms like Particle swarm optimization (PSO) and Differential evolution 
(DE). Simulation results show the effectiveness of the proposed approach to generate 
well distributed pareto-optimal non-dominated solutions of multi-objective problem. 
Key words: non-dominated sorting genetic algorithm, generation rescheduling, particle 
swarm optimization, differential evolution, overload index 

 
 
 
 

1. Introduction 
 
 Overloading in an electrical power system may occur due unexpected contingencies such 
as outage of lines, transformers, generators and sudden increase of load demand or failure of 
equipments. These overloads can be relieved through rescheduling the power outputs of 
generators, use of phase shifting transformers, switching the transmission network and load 
shedding. In general, power dispatch is a nonlinear programming problem. It is classified into 
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two parts namely real and reactive power dispatch. The reactive power dispatch in a system 
helps to reduce the overload more effectively but it cannot always be delivered from a source 
to an electrically remote sink. The real power dispatch is the most widely used control for 
network overload alleviation because of ease of control and require no additional reserves.  
 Optimal power flow (OPF) is an important tool for power system management. The aim of 
OPF problem is to optimize one or more objectives by adjusting the power system control 
variables while satisfying a set of physical and operating constraints such as generation and 
load balance, bus voltage limits, power flow equations, and active and reactive power limits. 
A variety of optimization techniques have been applied to solve the OPF problem such as gra-
dient method [1], linear programming method [2] and interior point method. In conventional 
optimization methods, identification of global minimum is not possible. To overcome the 
difficulty, evolutionary algorithms like genetic Algorithm [3], particle swarm optimization [4], 
differential evolution [5], gravitational search algorithm [6], harmony search method [7] and 
artificial bee colony optimization [8] have been proposed.  
 In literature, several approaches have been proposed to alleviate the transmission line 
overloads in an electric power system. In [9], the authors’ proposed a fuzzy logic based ap-
proach to alleviate the network overloads by generation rescheduling. The generation shift 
sensitivity factor (GSSF) was used to decide the changes in generation. The approach removes 
the overloaded lines in the considered test cases but could not remove the overload com-
pletely. In [10], the authors’ proposed a static security enhancement through optimal utiliza-
tion of thyristor-controlled series capacitors (TCSC). The ranking the system branches was 
based on determination of single contingency sensitivity (SCS) index which helps to decide on 
the best locations for the TCSCs. The objective of the optimization problem was to eliminate 
or minimize line overloads as well as the unwanted loop flows under single contingencies. In 
[11], the authors’ proposed, the use of genetic algorithm (GA) and multi-objective genetic 
algorithm (MOGA) to alleviate the violations of the overloaded lines and minimize the trans-
mission power losses for different operating conditions. In [12], the authors’ proposed, multi-
objective particle swarm optimization (MOPSO) method for transmission line overload mana-
gement. The two competing objectives were considered for minimization such as line over-
loads and operating cost of generators. The overloads in a transmission network were al-
leviated by generation rescheduling. In [13], the authors’ proposed a fuzzy particle swarm 
optimization (FPSO) based congestion management by optimal rescheduling of active powers 
of generators. The generators had been chosen based on the generator sensitivity to the con-
gested line. The results were compared with fitness distance ratio particle swarm optimization 
(FDRPSO) and conventional PSO. In [14], the authors’ proposed, graphical user interface 
(GUI) based on a genetic algorithm to determine the optimal location and sizing parameters of 
multi type FACTS devices for maximization of power system loadability in a transmission 
network. In [15], the authors’ proposed an application of DEPSO algorithm to solve the maxi-
mum loadability problem. The results were compared with multi agent hybrid particle swarm 
optimization (MAHPSO) and differential evolution (DE). The algorithm improves the load-
ability margin with less number of iterations by consuming more time per iteration when 
compared to other algorithms.  
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 In this paper, a fuzzy ranking based non-dominated sorting genetic algorithm-II for over-
load management in power system network is presented with illustrated example.      
 The organization of the paper is as follows: Section 2 presents the optimization problem 
formulation for transmission line management. Sections 3, 4, 5 and 6 explain the overview of 
PSO, DE, NSGA-II and Fuzzy ranking method. In section 7 the algorithm of proposed NSGA-
II in solving the network overload alleviation is presented. The simulation results for different 
contingency cases in IEEE 30 and IEEE 118 bus systems are presented in section 8. Finally, 
conclusions are given in Section 9.   
 
 

2. Problem formulation 

 The objective function of the proposed method is to find an optimum value of shift in 
active power generation along with network constraints so as to minimize the total generation 
cost, transmission line overload and real power loss simultaneously in the network. The prob-
lem of proposed algorithm may be stated as follows. 

2.1. Objective functions 
 Objective 1 Minimize total generation cost 
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where GC  Generation cost, GN  Number of generators, giP  Real power generation of i th ge-
nerator and iii cba  Cost coefficients of generator i. 
 Objective 2 Minimize transmission line overload by reducing Overload Index 
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where OI  Overload Index, LN  Number of overloaded lines, iLF  MVA flow on line i and 
icapiL  MVA capacity of line i. 

 Objective 3 Minimize real power loss 
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where RPL Real power loss, DN  Number of participating loads, iDP  Real power demand at 
bus i, g Generator and D Demand. 
 
2.2. Constraints 
2.2.1. Equality constraints 
 Generation/load balance Equation: 
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where LP  – system real power loss. 
 
2.2.2. Inequality constraints 
 (i) Voltage constraints 

  ,max,min, iii VVV ≤≤  (5)  

where iV  – voltage magnitude at bus i, maxiV  – upper limit of voltage magnitude at bus i, miniV  
– lower limit of voltage magnitude at bus i. 
 (ii) Real power generation constraints 

  ,max,min, gigigi PPP ≤≤   (6) 

where giP  – real power generation at generator bus i, maxgiP  – upper limit of real power gene-
ration at generator bus i. mingiP  – lower limit of real power generation at generator bus i. 
 
 

3. Overview of particle swarm optimization 
 
 PSO is a simple and efficient population-based optimization method [16]. PSO simulates 
the behaviors of bird flocking. It uses a number of agents (particles) that constitute a swarm 
moving around in the search space looking for the best solution. Each particle is treated as 
a point in an N-dimensional space which adjusts its “flying” according to its own flying ex-
perience as well as the flying experience of other particles. All particles have fitness values, 
which are evaluated by the fitness function to be optimized, and have velocities, which direct 
the flying of the particles.                                                
 PSO is initialized with a group of random particles (solutions) and then searches for opti-
ma by updating generations. In every iteration, each particle is updated by two Abest” values 
such as particle best ( bestp ) and global best ( bestg ). After finding the two best values, the 
particle updates its velocity and positions with following equation (7) and (8).  
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where iV  – velocity of thi  particle, iP  – position of thi  particle.  
 The term ∗)(rand  ( )(best u

ii pp − ) is called particle memory influence. The term ∗)(rand  
( )(best u

ii pg − ) is called swarm influence. )(u
iV is the velocity of thi  particle at iteration u must 

lie in the range.   
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where maxV  – maximum velocity and minV  – minimum velocity. The parameter maxV  
determines the resolution, or fitness, with which regions are to be searched between the 
present position and the target position. If maxV  is too high, particles may fly past good 
solutions. If minV  is too small, particles may not explore sufficiently beyond local solutions. 
The constants 1C  and 2C  pull each particle toward bestp  and bestg  positions. Suitable 
selection of inertia weight w provides a balance between global and local explorations, thus 
requiring less iteration on average to find a sufficiently optimal solution. In general, the inertia 
weight w is set according to the following equation.     
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where, =w  inertia weighting factor, =maxw  maximum value of weighting factor, minw   
= minimum value of weighting factor, =maxiter  maximum number of iterations and iter  
= current number of iteration. 

 
 

4. Overview of differential evolution 
 

 Differential Evolution is a stochastic direct search optimization method, which can be used 
to minimize nonlinear and non-differentiable continuous space functions with real-valued 
parameters. It was first proposed by Storn and Price. DE also relies on initial random popu-
lation generation, which is then improved using selection, mutation, and crossover repeated 
through generations until the convergence criterion is met [17].  
    
4.1. Differential evolution algorithm optimization process 

4.1.1. Initialization 
 In the first step of the Differential Evolution Algorithm optimization process, the popu-
lation of candidate solutions must be initialized. Typically, each decision parameter in every 
vector of the initial population is assigned a randomly chosen value from within its cor-
responding feasible bounds.    
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, jjjj

G
ij xxrandxx −+==   (11) 

where ,...,,1 pNi =  ,,...,1 Dj =  PN  – particle size, D – number of control variables, )0(
,

=G
ijx  

is the initial value )0( =G  of the thj  parameter of the thi  individual vector. min
jx and max

jx  
are the lower and upper bounds of the thj  decision parameter respectively.      
 
4.1.2. Mutation 
 The Differential Evolution Algorithm optimization process is carried out by applying the 
following three basic genetic operations; mutation, recombination (also known as crossover) 
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and selection. After the population is initialized, the operators of mutation, crossover and se-
lection create the population of the next generation )1( +GP  by using the current population 

)(GP . The mutation operator generates mutant vectors ( )(G
iV ) by perturbing a randomly selec-

ted vector ( 1rX ) with the difference of two other randomly selected vectors ( 2rX  and .)3rX  
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where 3,2,1 rrr  are randomly chosen vector indices, which ].,...,1[3,2,1 pNrrr ∈  
 F is a user-defined constant known as the “scaling mutation factor”, which is typically 
chosen from within the range (0, 1).       
  
4.1.3. Crossover 
 Crossover operation helps to increase the diversity among the mutant parameter vectors. 
At the generation G, the crossover operation creates trial vectors ( iU ) by mixing the para-
meters of the mutant vectors ( iV ) with the target vectors ( ix ) according to a selected proba-
bility distribution.    
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where CR is the crossover probability, which is usually selected from within the range )1,0(  
and jrand  is a uniformly distributed random number within the range )1,0(  generated a new 
for each value of j  
     
4.1.4. Selection 
 The selection operator chooses the vectors that are going to compose the population in the 
next generation. This operator compares the fitness of the trial vector and the corresponding 
target vector and selects the one that provides the best solution. The fitter of the two vectors is 
then allowed to advance into the next generation according to Equation (14).   
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5. Overview of NSGA-II 
 
 NSGA II is an elitist non-dominated sorting Genetic Algorithm to solve multi-objective 
optimization problem. It was proposed by Srinivas and Deb [18]. It is a popular non-domi-
nation based genetic algorithm for multi-objective optimization. It is a very effective algo-
rithm but has been generally criticized for its computational complexity, lack of elitism and 
for choosing the optimal parameter value for sharing parameter Fshare. A modified version, 
NSGA-II was developed [19], which has a better sorting algorithm, incorporates elitism and 
no sharing parameter needs to be chosen prior.  
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5.1. Procedure for NSGA-II 
 1) Initialize the population tP  using equality and inequality constraints. 
 2) Create offspring population tQ  from the current population tP . 
 3) Combine the two populations tP  and tQ  to form .tR  .ttt QPR ∪=  
 4) Determine all non-dominated fronts iF  of .tR  
 5) Initiate the new population .1,1 =+ iPt  
 6) While ,1 NFP it ≤++ do: 
 7) .1,11 +=∪= ++ iiFPP ittt  
 8) Sort the last front iF  using the crowding distance in descending order and choose the first 

)( 1+− tPN elements of .iF  
 9) Use selection, crossover and mutation operators to create the new offspring population 

1+tQ size .objN  
 
 
 

6. Overview of fuzzy ranking method 
 
 Fuzzy ranking method is employed to extract the best compromise solution out of the 
available non-dominated solutions depending upon its highest rank. In real applications, due to 
imprecision of judgments by decision makers a fuzzy membership functions adopted to pro-
vide best compromise solution out of the pareto-optimal solutions which satisfies different 
goals to some extent [20, 21]. The membership value ‘0’ indicates incompatibility with the 
sets, while ‘1’ means full compatibility. In other words, the membership value indicates the 
degree of satisfaction of the solution for an objective. )( iFμ  is a strictly monotonic decreasing 
function defined as: 
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where iF  is the membership value of ith objective function and min
iF  and max

iF  are the ex-
pected minimum and maximum values of ith objective function. 
 The value of the membership function indicates how much (in scale from 0 to 1) a solution 
is satisfying the ith objective .iF  The best solution can then be selected using fuzzy min-max 
proposition. 

  [ ]{ },)(minmaxonbestsoluti
k

jFμμ =    (16) 

where min is the minimum membership value of objective functions, max is the maximum 
membership value among the calculated minimum, j is the number of objectives to be mini-
mized and k is the number of pareto-optimal solutions obtained. 

Brought to you by | Biblioteka Glówna Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie
Authenticated

Download Date | 11/4/14 1:20 PM



                                                           K. Pandiarajan, C.K. Babulal                                          Arch. Elect. Eng. 374 

7. Proposed Fuzzy ranking based NSGA-II algorithm for network 
overload alleviation 

 The flow chart of the proposed NSGA-II algorithm is shown Figure 1 and their steps  
are given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Flow chart of proposed NSGA-II algorithm 
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Step 1: Set up NSGA-II parameters like particle size, number of generations, crossover pro-
bability, mutation probability distribution indices for crossover and mutation. 
Step 2: Read line data, bus data and costs for each generator. 
Selection of control variables embedded in the individuals is a first step while applying evolu-
tionary computation algorithm. Generator real power redispatch is a control variable in this 
work. Hence the control variables are generated randomly satisfying their practical operation 
constraints (6).      
Step 3: For each chromosome of population, run Newton Raphson power flow to calculate the 
objective function 1, 2, 3 using Equation (1), (2) and (3) respectively.     
Step 4: Non-domination sorting of population is carried out and then tournament selection is 
applied to select the best individuals based on crowding distance. 
Step 5: Crossover and Mutation operators are carried out to generate offspring (Qt) and the 
new vectors obtained must satisfy the limits if not set it to the appropriate extreme. 
Step 6: Calculate the value of each objective function of Qt and merge the parent and offspring 
population to preserve elites. 
Step 7: Again perform non-dominated sorting on the combined population based on crowding 
distance measure and obtain the best new parent population (Pt +1) of size N out of 2N po-
pulation, so this would be the parents for next generation and this process is carried out till 
a maximum number of generations are reached. 
Step 8: Obtain Pareto front of optimal solutions.  
Step 9: Apply fuzzy ranking method, determine membership values of objective functions 1, 2 
and 3 using Equation (15). 
Step 10: Determine the best compromise solution of objective functions 1, 2 and 3 using 
Equation (16).    

 
 
 

8. Simulation results 
 

 The simulation studies are performed on system having 2.27 GHz Intel 5 processor with 
2 GB of RAM in MATLAB environment. The proposed Fuzzy ranking based NSGA-II 
approach is applied to minimize three competing objectives of generation cost, transmission 
line overload and real power loss for different contingency cases in IEEE 30 and IEEE 118 
bus systems. N-1 contingency analysis is carried out under base load conditions to identify the 
harmful contingencies. To demonstrate the effectiveness of the proposed approach, three 
different harmful contingency cases are considered.  
 For the studies, the following parameters are used. 
 Particle size: 40, No. of generation: 100, Crossover probability: 0.9, Mutation probability: 
0.1, Distribution index for cross over: 20, Distribution index formulation: 20. 
 The results of three cases are compared with other evolutionary algorithms. The trans-
mission line limits for IEEE 30 bus system is taken from [22]. The transmission line limits for 
IEEE 118 bus system is taken from [23].  
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8.1. IEEE 30 bus system  
 This system consists of 6 generator buses, 24 load buses and 41 transmission lines with 
total load of 283.4 MW and 126.2 MVAR. Two cases are considered for illustration purpose. 
The amount power flow, power violation and overload factors in the identified overloaded 
lines before generation rescheduling are summarized in Table 1.  
  

Table 1. Summary of contingency analysis for IEEE 30 bus system 

Case Outage 
line 

Line  
overloaded 

Line limit 
(MVA) 

Actual power 
flow (MVA) 

Overload 
 factor 

Total power 
violation 
(MVA) 

Power loss 
(MW) 

1-2 1-3 130 307.01 2.3616 426.70 60.63 
 3-4 130 279.60 2.1508   
 4-6 90 175.55 1.9506   

A 

 6-8 32   46.51 1.4536   
2-5 1-2 130 165.44 1.2726 160.26 32.82 

 2-4 65 74.67 1.1487   

 2-6 65 102.96 1.5840   
 4-6 90 123.68 1.3742   

 5-7 70 110.10 1.5729   

B 

 6-8 32 35.42 1.1067   
 
 The outages of the line 1-2 and 2-5 are the most critical one which have resulted in over-
loading of other lines. As a consequence of line 1-2 outage, lines 1-3, 3-4, 4-6 & 6-8 get over-
loaded. Lines 1-2, 2-4, 2-6, 4-6, 5-7 & 6-8 get overloaded due to the outage of line 2-5. 
 
8.1.1. Case A & Case B 
 In case A, four lines get overloaded with a total power violation of 426.70 MVA and real 
power loss of 60.63 MW. In case B, six lines get overloaded with a total power violation of 
160.26 MVA and real power loss of 32.82 MW. 
  

Fig. 2. Control variable setting for corrective 
action – case A 
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The control variable setting to minimize the generation cost, transmission line overload and 
real power loss for case A and case B is shown in Figures 2 and 3 respectively.  
 

Fig. 3. Control variable setting for corrective 
action – case B 

 
 
 
 The five intermediate solutions with their membership value out of the obtained non-dominated 
solution set using proposed method for case A and case B is shown in Tables 2, 3 respectively.  
 

Table 2. Pareto optimal intermediate solutions based on fuzzy ranking for case A 

Generation  
cost ($/h) 

Overload 
index 

Real  
power loss 

(MW) 
µ1 µ2 µ3 µmin 

870.03 0.00 9.11 0.7086 1.0000 0.6549 0.6549 
841.43 260.16 15.30 0.9890 0.6569 0.1335 0.1335 
841.70 165.74 14.89 0.9863 0.7814 0.1679 0.1679 
872.41 0.00 8.83 0.6852 1.0000 0.6790 0.6790 
844.14 72.83 14.13 0.9624 0.9039 0.2321 0.2321 

 
Table 3. Pareto optimal intermediate solutions based on fuzzy ranking for case B 

Generation  
cost ($/h) 

Overload 
index 

Real power 
loss (MW) µ1 µ2 µ3 µmin 

834.22 2.03 13.21 0.9464 0.9805 0.2800 0.2800 
877.34 0.00 8.96 0.5306 1.0000 0.7753 0.5306 
832.01 17.39 13.92 0.9677 0.8326 0.1974 0.1974 
833.60 5.76 13.35 0.9524 0.9445 0.2641 0.2641 
861.84 0.00 9.92 0.6800 1.0000 0.6634 0.6634 

 
 The best compromise solutions are determined depending upon their highest rank i.e. the 
solution which minimizes all the three objectives simultaneously. The best solutions are 
shown in bold in Table 2 and 3 and have a rank of 0.6790 and 0.6634 which means that all the 
three objectives are satisfied at least 67.90% and 66.34%. The Pareto optimal solution for both 
cases is shown in Table 4.  
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Table 4. Pareto optimal solution for both case A and case B 

Pareto-optimal solution Cases Generation cost 
($/h) 

Overload 
index 

Real power 
loss (MW) 

A 840.31 758.24 16.89 Solution I (Best generation cost) B 828.66 97.82 15.62 
A 850.51 0 12.37 Solution II (Best overload index) 
B 838.39 0 12.65 
A 942.30 0 5.02 

Solution III (Best real power loss) 
B 932.35 0 7.03 
A 872.41 0 8.83 Solution IV (Best compromise solution) 
B 861.84 0 9.92 

 
 From Table 4, it is clear that; overload is managed by changing rescheduling of generators 
active power for both cases. If the operator wants to alleviate the line overload completely, he 
will choose solution II. If the operator wants to reduce the power loss, he will choose solution 
III. However, if the operator allows some overload and takes solution I. To satisfy solutions I, 
II and III, the operator will choose solution IV which gives best compromise solution with 
alleviation of overload and compromised generation cost of 872.41 $/h and 861.84 $/h for 
Case A and Case B respectively. The computation time for Case A and Case B is 31.62 
seconds and 29.89 seconds respectively for 100 generations. The Pareto-front of generation 
cost, overload index and real power loss, generation cost versus overload index and generation 
cost versus real power loss for case A is shown in figure 4, 5 and 6 respectively.  
 

 

Fig. 4. Pareto-front of generation cost, overload index and real power loss – case A 
 

Table 5. Control variables for best overload index for case A  

Generated real power (MW) 
Method OI 

1 2 5 8 11 13 
Proposed method 0 127.35 60.59 31.35 28.96 24.46 23.06 
PSO 0 127.32 56.20 36.12 25.08 22.07 28.89 
DE 0 129.33 73.59 32.38 31.46 15.88 13.25 
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 The Pareto-front of generation cost, overload index and real power loss for case B is 
shown in Figure 7. Table 5 shows the control variables for best overload index compared with 
simple PSO and DE for case A. Table 6 shows the control variables for best overload index 
compared with simple PSO and DE for case B. 
 

 
Fig. 5. Pareto-front of generation cost versus overload index – case A 

 

 
Fig. 6. Pareto-front of generation cost versus real power loss – case A 

 
 In both case A and case B, the proposed method relieves the overloaded lines reported in 
Table 1 by generation rescheduling alone with a minimum generation cost of 850.51 $/h and 
838.39 $/h when compared to simple PSO and DE based approaches which have the cost of 
859.44 $/h, 845.02 $/h and 851.45 $/h, 841.52 $/h respectively. 
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Fig. 7. Pareto-front of generation cost, overload index and real power loss – case B 
 

Table 6. Control variables for best overload index for case B 

Generated real power (MW) 
Method OI 

1 2 5 8 11 13 
Proposed method 0 148.51 47.63 33.11 24.31 21.53 20.95 
PSO 0 139.03 51.97 33.65 23.32 20.66 26.92 
DE 0 141.22 51.26 33.23 23.02 20.42 26.59 

 
In line 1-2 outage under base load case, GA based approach reported in [24] was not 
completely minimize the severity index even if rescheduling of generators active power and 
generator bus voltage magnitude and still has the severity index of 2.473 when compared to 
proposed NSGA-II approach. The power loss is reduced from 60.63 MW to 12.37, 12.29 and 
12.49 using proposed, PSO and DE approaches respectively. In case B, among the six 
overloaded lines, the overload factor of the most overloaded line 2-6 is 1.5840 and that after 
rescheduling is reduced to 0.9596, 0.9429 and 0.9498 using proposed, PSO and DE 
approaches respectively. Similarly, the power loss is reduced from 32.82 MW to 12.65, 12.15 
and 12.34. 
 
8.2. IEEE 118 Bus System  
 This system consists of 54 generator buses and 186 transmission lines with total load of 
4242 MW and 1438 MVAR. One case is considered for illustration purpose. The amount 
power flow, power violation and overload factors in the identified overloaded lines before 
generation rescheduling are summarized in Table 7.  
 
8.2.1. Case C  
 In case C, the five lines get overloaded with a total power violation of 77.63 MVA and real 
power loss of 197.03 MW. The control variable setting to minimize the generation cost, line 
overload and real power loss is shown in Figure 8.  
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Table 7. Summary of contingency analysis for IEEE 118 bus system 

Case Outage 
line 

Line 
overloaded 

Line limit 
(MVA) 

Actual power 
flow 

(MVA) 

Overload 
factor 

Total power 
violation 
(MVA) 

Power 
loss 

(MW) 
C 8-5 12-14 100 107.20 1.0720 77.63 197.03 
  13-15 100 103.07 1.0307   
  12-16 130 143.65 1.1050   
  15-17 200 223.48 1.1174   

  16-17 130 160.22 1.2325   
 
 

 

Fig. 8. Control variable setting for corrective action – case C 
 
 
 The five intermediate solutions with their membership value out of the obtained non-
dominated solution set using proposed method is shown in Table 8. The best solutions are 
shown in bold in Table 8. The Pareto optimal results obtained from the proposed fuzzy rank-
ing based NSGA-II approach is presented in Table 9. When only cost minimization is con-
sidered, the minimum value obtained is 133959.86 $/h, when only overload alleviation is con-
sidered, minimum value obtained is 0 and when only power loss minimization is considered, 
minimum value obtained is 129.56 MW. 
  
 

Table 8. Pareto optimal intermediate solutions based on fuzzy ranking for case C 

Generation cost 
($/h) 

Overload 
index 

Real power 
loss (MW) µ1 µ2 µ3 µmin 

134277.92 17.05 148.53 0.9855 0.2214 0.0877 0.0877 
140312.12 0.00 135.31 0.6837 1.0000 0.7233 0.6837 
145521.15 0.00 131.56 0.4233 1.0000 0.9037 0.4233 
134489.73 6.31 146.96 0.9749 0.7121 0.1633 0.1633 
134297.62 21.51 148.29 0.9845 0.0178 0.0995 0.0178 
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Table 9. Pareto optimal solution for case C 

Pareto-optimal solution Generation cost ($/h) OI Real power loss (MW) 
Solution I 
(best generation cost) 133959.86 1.49 153.76 

Solution II 
(best overload index) 133999.04 0 149.46 

Solution III 
(best real power loss) 153985.33 0.53 129.56 

Solution IV 
(best compromise solution) 140312.12 0 135.31 

 

 
 

Fig. 9. Pareto-front of generation cost, overload index and real power loss – case C 
 
 

Table 10. Control variables for best overload index for case C 

Generated real power (MW) Generated real power (MW) 
Generator 

bus number Proposed 
method PSO DE 

Generator 
bus number Proposed 

method PSO DE 

10 455.23 417.05 464.79 65 453.69 457.96 229.47 
12 179.33 172.20 175.49 66 286.57 339.90 319.04 
25 222.88 104.91 278.59 69 499.47 821.16 806.79 
26 306.23 294.86 200.44 80 480.79 306.13 447.97 
31 8.73 9.35 5.00 87 5.06 10.18 8.48 
46 24.99 22.96 30.05 89 452.69 538.41 663.08 
49 213.64 232.83 200.00 100 285.98 254.38 140.22 
54 62.03 107.58 57.94 103 51.52 10.00 10.00 
59 155.71 223.39 112.22 
61 201.25 50.00 194.73 

111 45.65 33.68 75.52 
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 The results simulated from Table 9 reveals that the best compromise solution of multi-
objective problem is solution IV with the highest rank of 0.6837. The best compromise 
solution obtained is quite satisfactory and has the generation cost and real power loss of 
140312.12 $/hr and 135.31 MW respectively. The computation time is 58.88 seconds for 100 
generations. The Pareto-front of generation cost, overload index and real power loss is shown 
in Figure 9. Table 10 shows the control variables for best overload index compared with 
simple PSO and DE.  
 In case C, the proposed method relieves the overloaded lines reported in Table 7 with 
a minimum generation cost of 133999.04 $/h when compared to simple PSO and DE based 
approaches which have the cost of 138884.50 $/h and 138549.90 $/h respectively. The power 
loss is reduced from 197.03 MW to 149.46, 164.93 and 177.83 using proposed, PSO and DE 
approaches respectively.  
 
 

9. Conclusion 
 
 This paper has proposed a fuzzy ranking based non-dominated sorting genetic algorithm-II 
for overload management by generation rescheduling in a contingent power network. The 
Fuzzy ranking method is used to find the best compromise solution from Pareto-optimal front. 
The proposed method has been tested and examined on the standard IEEE-30 and IEEE 118 
bus systems. Line overloads are simulated due to unexpected line outage under base load 
conditions for considered cases. In Case A, Case B and Case C, the proposed method has 
relieved the overloaded lines with a minimum generation cost of 850.51 $/h, 838.39 $/h and 
133999.04 $/h when compared to simple PSO and DE based approaches. The proposed fuzzy 
based NSGA-II algorithm is capable to handle different competing objectives and provides 
a set of non-dominated pareto-optimal solutions. This helps the system operator to choose 
a suitable optimum solution among the different possibilities according to the system require-
ment. However, single objective optimization algorithms such as simple PSO and DE does not 
give any choice for the operator. 
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