PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of heat flux at a solid-solid intreface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determining the boundary conditions of heat transfer in steel manufacturing is a very important issue. The heat transfer effect during contact of two solid bodies occurs in the continuous casting steel process. The temperature fields of solids taking part in heat transfer are described by the Fourier equation. The boundary conditions of heat transfer must be determined to get an accurate solution to the heat conduction equation. The heat flux between the tool and the object processed depends mainly on temperature, pressure and time. It is very difficult and complicated to accomplish direct identification and determination of the boundary conditions in this process. The solution to this problem may be the construction of a process model, performing measurements at a test stand, and using numerical methods. The proposed model must be verified on the basis of parameters which can easily be measured in industrial processes. One of them is temperature, which may be used in inverse methods to determine the heat transfer coefficient. This work presents the methodology for determining the heat flux between two solid bodies staying in contact. It consists of two stages – the experiment and the numerical computation. The problem was solved by using the finite element method (FEM) and a numerical program developed at AGH University of Science and Technology in Krakow. The findings of the conducted research are relationships describing the value of the heat flux versus the contact time and surface temperature.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] A. Cwudziński, J. Jowsa, P. Przegrałek, Archives of Metallurgy and Materials 61(4), 2013-2020 (2016).
  • [2] M. Rywotycki, Z. Malinowski, J. Giełżecki, A. Gołdasz, Archives of Metallurgy and Materials 59 (2), 487-492 (2014).
  • [3] W. Oberaigner, R. Leitner, Innovation highlights in continuous casting automation. VII Międzynarodowa konferencja COS, Krynica (2016).
  • [4] Y. Meng, B. G. Thomas, Metallurgical and Materials Transactions B 34B, 685-705 (2003)
  • [5] J. S. Ha, J. R. Cho, B. Y. Lee, M. Y. Ha, Journal of Materials Processing Technology 113, 257-261 (2001).
  • [6] J. Falkus (ed.), Modelowanie procesu ciągłego odlewania stali. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji - Państwowy Instytut Badawczy, Radom 2012.
  • [7] M. Krzyżanowski, J. H. Beynon, Materials Science and Technology 32, 407-417 (2016).
  • [8] M. Rywotycki, Z. Malinowski, A. Szajding, J. Falkus, K. Sołek, K. Miłkowska-Piszczek, Hutnik Wiadomości Hutnicze 83, 13-17 (2016).
  • [9] R. Wyczółkowski, T. Wyleciał, Hutnik-WH 84 (5), 225-228 (2017).
  • [10] Y. Zhao, D. F. Chen, M. J. Long, J. L. Shen, R. S. Qin, Ironmaking and Steelmaking 415, 377-386 (2014).
  • [11] B. Barber, B. Patrick, H. Sha, K. H. Spitzer, R. York, R. Scholz, R. Jeschar, H. Kraushaar, Determination of strand surface temperatures in continuous casting. European Commission Technical Steel Research Steelmaking, Luxembourg (1998).
  • [12] M. Rywotycki, Archives of Metallurgy and Materials 61 (4), 2061-2070 (2016).
  • [13] Z. Malinowski, J. G. Lenard, M. E. Davies, Journal of Materials Processing Technology 41 (2), 125-142 (1994).
  • [14] P. Mullinger, B. Jenkins, Industrial and process furnaces: principles, design and operation, Elsevier, Butterworth,-Heineman, (2008).
  • [15] M. Rywotycki, Wymiana ciepła w warunkach kontaktu narzędzia i materiału w wysokotemperaturowych procesach metalurgicznych, Wydawnictwa AGH, Kraków (2017).
  • [16] W. Volk, Statystyka dla inżynierów, Wydawnictwa Naukowe - Techniczne, Warszawa (1973).
  • [17] A. Cebo, Archives of Metallurgy and Materials 55 (2), 429-434 (2010).
  • [18] N. V. Rachchh, R. K. Misra, International Journal of Management, IT and Engineering 2, 82-102 (2012).
Uwagi
EN
1. The study was performed as part of regular activity, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74081e7d-5de3-43e6-9638-d5616abab5ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.