Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study focuses on precipitationdischarge data-driven models, with regression analysis between the weighted maximum rainfall and maximum discharge of flood events. It is also the first of its kind investigation for the Wernersbach catchment, which incorporates data-driven models in order to evaluate the suitability of the model in simulating the discharge from the catchment and provide good insights for future studies. The input parameters are hydrological and climate data collected from 2001 to 2009, including precipitation, rainfall-runoff and soil moisture. The statistical regression and artificial neural network models used are based on a data-driven multiple linear regression technique, and the same input parameters are applied for validation and calibration. The artificial neural network model has one hidden layer with a sigmoidal activation function and uses a linear activation function in the output layer. The artificial neural network is observed to model 0.7% and 0.5% of values, with and without extreme values respectively. With less than 1% error, the artificial neural network is observed to predict extreme events better compared to the conventional statistical regression model and is also better suited to the tasks of rainfall-runoff and flood forecasting. It is presumed that in the future this study’s conclusions would form the basis for more complex and detailed studies for the same catchment area.
Rocznik
Tom
Strony
54--62
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Technische Universität Dresden, Institute of Hydrology and Meteorology, Dresden, Germany Goethe University, Institute of Physical Geography, Frankfurt am Main, Germany
autor
- Technische Universität Dresden, Institute of Hydrology and Meteorology, Dresden, Germany
autor
- Technische Universität Dresden, Institute of Hydrology and Meteorology, Dresden, Germany
autor
- Technische Universität Dresden, Institute of Hydrology and Meteorology, Dresden, Germany
Bibliografia
- Abebe A.J., Guinot V., Solomatine D.P., 2000a, Fuzzy alpha-cut vs. Monte Carlo techniques in assessing uncertainty in model parameters, [in:] Proceedings of the 4th International Conference on Hydroinformatics, Iowa City, USA, July 2000, available online https://pdfs.semanticscholar. org/35ae/0ec4107ac2950e7bda62042b1056d732e7dc.pdf (data access 17.09.2019).
- Abebe A.J., Solomatine D.P., Venneker R.G.W., 2000b, Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events, Hydrological Sciences Journal, 45 (3), 425-436, DOI: 10.1080/02626660009492339.
- Abrahart R.J., Mount N.J., Ghani N.A., Clifford N.J., Dawson C.W., 2011, DAMP: A protocol for contextualizing goodness-of-fit statistics in sediment-discharge data-driven modelling, Journal of Hydrology, 409 (3), 596-611, DOI: 10.1016/j. jhydrol.2011.08.054.
- Abrahart R.J., See L.M., 2000, Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, Hydrological Processes, 14 (11-12), 2157-2172, DOI: 10.1002/1099-1085(20000815/30)14:11/123.0.CO;2-S.
- Abrahart R.J., See L.M., Solomatine D.P., 2008, Practical hydroinformatics: Computational intelligence and technological developments in water applications, Springer-Verlag Berlin Heidelberg, 505 pp., DOI: 10.1007/978-3-540-79881-1.
- Benito G., Lang M., Barriendos M., Llasat M.C., Francés F., Ouarda T., Thorndycraft V.R., Enzel Y., Bardossy A., Coeur D., Bobée B., 2004, Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods, Natural Hazards, 31 (3), 623-643, DOI: 10.1023/B:NHAZ.0000024895.48463.eb.
- Bernhofer C., 2002, Guidebook on excursions and internships in the Tarandt forest: materials for hydrological and meteorological field practice, (in German), Technische Universität Dresden, 292 pp.
- Bhattacharya B., Solomatine D.P., 2003, Neural networks and M5 model trees in modeling water level-discharge relationship for an Indian river, [in:] Proceedings of the 11th European Symposium on Artificial Neural Networks, Bruges, Belgium, April 2003, 407-412, available at http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.83.3898&rep=rep1&type=pdf (data access 17.09.2019).
- Bilgili M., 2010, Prediction of soil temperature using regression and artificial neural network models, Meteorology and Atmospheric Physics, 110 (1-2), 59-70, DOI: 10.1007/s00703-010-0104-x.
- Blöschl G., Hall J., Parajka J., Perdigão R.A.P., Merz B., Arheimer B., Aronica G.T., Bilibashi A., Bonacci O., Borga M., Čanjevac I., Castellarin A., Chirico G.B., Claps P., Fiala K., Frolova N., Gorbachova L., Gül A., Hannaford J., Harrigan S., Kireeva M., Kiss A., Kjeldsen T.R., Kohnová S., Koskela J.J., Ledvinka O., Macdonald N., Mavrova-Guirguinova M., Mediero L., Merz R., Molnar P., Montanari A., Murphy C., Osuch M., Ovcharuk V., Radevski I., Rogger M., Salinas J.L., Sauquet E., Šraj M., Szolgay J., Viglione A., Volpi E., Wilson D., Zaimi K., Živković N., 2017, Changing climate shifts timing of European floods, Science, 357 (6351), 588-590, DOI: 10.1126/science.aan2506.
- Borga M., Anagnostou E.N., Blöschl G., Creutin J.-D., 2011, Flash flood forecasting, warning and risk management: the HYDRATE project, Environmental Science & Policy, 14 (7), 834-844, DOI: 10.1016/j.envsci.2011.05.017.
- Cannas B., Fanni A., See L.M., Sias G., 2006, Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning, Physics and Chemistry of the Earth. Parts A/B/C, 31 (18), 1164-1171, DOI: 10.1016/j.pce.2006.03.020.
- Clarke R.T., 1994, Statistical modelling in hydrology, 1 edition, Wiley & Sons, Chichester, 426 pp.
- Dawson C.W., Wilby R., 1998, An artificial neural network approach to rainfall-runoff modelling, Hydrological Sciences Journal, 43 (1), 47-66, DOI: 10.1080/02626669809492102.
- Dibike Y.B., Solomatine D.P., Abbott M.B., 1999, On the encapsulation of numerical-hydraulic models in artificial neural network, Journal of Hydraulic Research, 37 (2), 147-161, DOI: 10.1080/00221689909498303.
- Gerold G., Cyffka B., Sutmöller J., Krüger J.-P., Herbst M., 1998, Regionalisierung der Abflußbildung über die Aggregierung homogener Flächen unter Verwendung des Geographischen Informationssystems ARC/INFO und der Digitalen Reliefanalyse (Programm SARA), [in:] Hydrologie und Regionalisierung: Ergebnisse eines Schwerpunktprogramms (1992-1998), Deutsche Forschungsgemeinschaft (ed.), Wiley-VCH Verlag GmbH, 191-204, DOI: 10.1002/9783527609260.ch9.
- Giustolisi O., Savic D.A., 2006, A symbolic data-driven technique based on evolutionary polynomial regression, Journal of Hydroinformatics, 8 (3), 207-222, DOI: 10.2166/hydro.2006.020b.
- Goldberg V., Bernhofer C., 2007, Water balance of forested catchments, [in:] Global change: enough water for all?, L.J. Lozán (ed.), Wissenschaftliche Auswertungen, 72-76.
- Hsu K., Gupta H.V., Sorooshian S., 1995, Artificial Neural Network modeling of the rainfall-runoff process, Water Resources Research, 31 (10), 2517-2530, DOI: 10.1029/95WR01955.
- Humphrey G.B., Gibbs M.S., Dandy G.C., Maier H.R., 2016, A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network, Journal of Hydrology, 540, 623-640, DOI: 10.1016/j.jhydrol.2016.06.026.
- Jaya Rami Reddy P., 2013, Stochastic hydrology, Laxmi Publications Ltd, New Delhi, 259 pp.
- Khu S.T., Liong S.-Y., Babovic V., Madsen H., Muttil N., 2001, Genetic programming and its application in real-time runoff forecasting, Journal of the American Water Resources Association, 37 (2), 439-451, DOI: 10.1111/j.1752-1688.2001.tb00980.x.
- Leys C., Ley C., Klein O., Bernard P., Licata L., 2013, Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, Journal of Experimental Social Psychology, 49 (4), 764-766, DOI: 10.1016/j.jesp.2013.03.013.
- Lobbrecht A.H., Solomatine D.M., 1999, Control of water levels in polder areas using neural networks and fuzzy adaptive systems, [in:] Water industry systems: modelling and optimization applications, vol. 1, D. Savic, G. Walters (eds.), Research Studies Press, Ltd. Baldock, UK, 509-518.
- Luk K.C., Ball J.E., Sharma A., 2001, An application of artificial neural networks for rainfall forecasting, Mathematical and Computer Modelling, 33 (6-7), 683- 693, DOI: 10.1016/S0895-7177(00)00272-7.
- Minns A.W., Hall M.J., 1996, Artificial neural networks as rainfall-runoff models, Hydrological Sciences Journal, 41 (3), 399-417, DOI: 10.1080/02626669609491511.
- Nourani V., Kisi Ö., Komasi M., 2011, Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process, Journal of Hydrology, 402 (1-2), 41-59, DOI: 10.1016/j.jhydrol.2011.03.002.
- Pesti G., Shrestha B.P., Duckstein L., Bogárdi I., 1996, A fuzzy rule-based approach to drought assessment, Water Resources Research, 32 (6), 1741-1747, DOI: 10.1029/96WR00271.
- Rezaeianzadeh M., Tabari H., Arabi Yazdi A., Isik S., Kalin L., 2014, Flood flow forecasting using ANN, ANFIS and regression models, Neural Computing and Applications, 25 (1), 25-37, DOI: 10.1007/s00521-013-1443-6.
- Riad S., Mania J., Bouchaou L., Najjar Y., 2004, Rainfall-runoff model using an artificial neural network approach, Mathematical and Computer Modelling, 40 (7- 8), 839-846, DOI: 10.1016/j.mcm.2004.10.012.
- Schneider C., Schönbein J., 2005, Climatological analysis of snow reliability and snowmaking of winter sports resorts in German low mountain ranges, (in German), Institute of Nature Sports and Ecology, German Sport University Cologne, 37 pp.
- Schulla J., 1997, Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaänderungen, Doctoral Thesis, Swiss Federal Institute of Technology in Zurich, 154 pp., DOI:10.3929/ethz-a-001763261.
- Solomatine D.P., Avila Torres L.A., 1996, Neural network approximation of a hydrodynamic model in optimizing reservoir operation, [in:] Proceedings of the International Conference on Hydroinformatics, Zurich, 1996, 201-206, available at https://www.un-ihe.org/sites/default/files/solomatinetorresann-approx-reserv-opthic-1996.pdf (data access 18.09.2019).
- Solomatine D.P., See L.M., Abrahart R.J., 2008, Data-driven modelling: concepts, approaches and experiences, [in:] Practical hydroinformatics, R.J. Abrahart, L.M. See, D.P. Solomatine (eds.), Water Science and Technology Library, 68, Springer, Berlin, Heidelberg, 17-30, DOI: 10.1007/978-3-540-79881-1_2.
- Sudheer K.P., Jain S.K., 2003, Radial basis function neural network for modeling rating curves, Journal of Hydrologic Engineering, 8 (3), 161-164, DOI: 10.1061/ (ASCE)1084-0699(2003)8:3(161).
- Svozil D., Kvasnicka V., Pospichal J., 1997, Introduction to multi-layer feed-forward neural networks, Chemometrics and Intelligent Laboratory Systems, 39 (1), 43-62, DOI: 10.1016/S0169-7439(97)00061-0.
- Thiessen A.H., 1911, Precipitation averages for large areas, Monthly Weather Review, 39 (7), 1082-1084, DOI: 10.1175/1520-0493(1911)392.0.CO;2.
- Vernieuwe H., Georgieva O., De Baets B., Pauwels V., Verhoest N., De Troch F., 2005, Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics, Journal of Hydrology, 302 (1-4), 173-186, DOI: 10.1016/j.jhydrol.2004.07.001.
- Yao X., Liu Y., 1997, A new evolutionary system for evolving artificial neural networks, IEEE Transactions on Neural Networks, 8 (3), 694-713, DOI: 10.1109/72.572107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7407c4fd-193f-458c-b9b8-2d3cd596479a