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ABSTRACT. This study focuses on precipitation-discharge data-driven models, with regression analysis between the weighted maximum rainfall and maximum 

discharge of flood events. It is also the first of its kind investigation for the Wernersbach catchment, which incorporates data-driven models in order to evaluate 

the suitability of the model in simulating the discharge from the catchment and provide good insights for future studies. The input parameters are hydrological 

and climate data collected from 2001 to 2009, including precipitation, rainfall-runoff and soil moisture. The statistical regression and artificial neural network 

models used are based on a data-driven multiple linear regression technique, and the same input parameters are applied for validation and calibration. 

The artificial neural network model has one hidden layer with a sigmoidal activation function and uses a linear activation function in the output layer. 

The artificial neural network is observed to model 0.7% and 0.5% of values, with and without extreme values respectively. With less than 1% error, the artificial 

neural network is observed to predict extreme events better compared to the conventional statistical regression model and is also better suited to the tasks 

of rainfall-runoff and flood forecasting. It is presumed that in the future this study’s conclusions would form the basis for more complex and detailed studies 

for the same catchment area.
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1. INTRODUCTION
The transformation of rain into a runoff 
is a complex process that is difficult to fully 
understand (Hsu et al. 1995; Humphrey et al. 
2016). The challenges faced are mainly linked 
to the non-stationary features of the phenom-
enon (e.g. trends, seasonality, and jumps) 
and a highly non-linear relationship between 
discharge and its driving variables (Cannas 
et al. 2006; Nourani et al. 2011). Hence, a re-
liable model for the simulation and prediction 
of the rainfall-runoff process is in demand, 
providing important information for integrated 
water resource management and planning.

With recent developments in computational 
intelligence, there has been a rapid expansion 
in the capabilities of empirical modelling, 
and in particular, in data-driven modelling 
(DDM). DDM is a fundamental analysis tech-
nique that uses the data characteristics of a sys-
tem and requires less input as parameters com-
pared to other models (Solomatine et al. 2008). 
As an empirical model, it applies mathematical 
equations in the analysis of concurrent input 
and output time series, for example, linear 
and multi-linear regressions (Clarke 1994).

The most popular computational techniques 
include artificial neural network (ANN) mod-
els, fuzzy rule-based systems (FRBSs), genetic 
algorithms (GAs), and approaches to model in-
tegration. ANN have been successfully applied 
in modelling rainfall-runoff processes e.g. Hsu 
et al. (1995), Minns and Hall (1996), Dawson 
and Wilby (1998), Dibike et al. (1999), Abra-
hart and See (2000), Abrahart et al. (2008). 
More specifically, Solomatine and Avila Torres 
(1996) replicated the behaviour of river basin 
hydrodynamic/hydrological models and pro-
posed the optimal control of a reservoir, while 
Bhattacharya and Solomatine (2003) and Sud-
heer and Jain (2003) modelled stage-discharge 
relationships. 

FRBSs have been successfully applied for 
drought assessment (Pesti et al. 1996), the predic-
tion of precipitation events (Abebe et al. 2000b), 
 the analysis of groundwater model uncertainty 
(Abebe et al. 2000a), the control of water levels 
in polder areas (Lobbrecht, Solomatine 1999) 
and the modelling rainfall-discharge dynam-
ics (Vernieuwe et al. 2005). Moreover, GAs 
have been used to optimise DDM techniques, 
such as neural networks (Yao, Liu 1997). Khu 
et al. (2001) applied genetic programming 
to real-time runoff forecasting for a catchment 
in France, while Giustolisi and Savic (2006) 
used evolutionary regression for groundwater 
and river temperature modelling.

The objective of our study is to perform a first 
of its kind investigation for the Wernersbach 
catchment, based on an approach incorporating 
two data-driven models, namely a statistical re-
gression model and an artificial neural network 
model, in order to validate and add to better 
understanding on the suitability of the models 
for the catchment’s discharge simulations. It also 
aims to provide good insights for future studies 
that would incooperate it’s conclusion and devel-
op on its limitations for future research studies. 

2. STUDY AREA 
AND METHODOLOGY
The catchment area of   the Wernersbach is lo-
cated approximately 25 km southwest of Dres-
den, in the north-western region of the land-
scape conservation area of Tharandt Forest 
and the eastern part of the Ore Mountains 
(latitude 50°58’N, longitude 13°28’E). The area 
covers 4.6 km2 and with an altitude above sea 
level within the range of 323-424 m.

The location of the catchment is depicted 
at the top left-hand side of in Figure 1, with 
the catchment location marked in red on the po-
litical boundary of Germany. In addition to this, 
Figure 1 presents the boundary of the Werners-
bach catchment in purple and the river and sur-
rounding areas in dark green. 

The local topography and the dominance 
of forestry as the land usage type are observed 
to majorly contribute to the deviations from 
the average climatic conditions. The area mainly 
compromises low slopes of less than 3° (Bern-
hofer 2002). These small-scale relief forms have 
a great impact, as concave relief forms tend 

to lead to lower temperatures (cold-air forma-
tion), and convex relief forms generally exhibit 
higher temperatures in the winter. These differ-
ences in relief also influence incident radiation, 
wind and precipitation (Bernhofer 2002).

The climate is essentially characterized 
by maritime influences whereby the greatest 
amount of precipitation is observed during 
the summer months.  

The mean annual temperature is 7.5°C, 
and the mean annual precipitation is approxi-
mately 847 mm (Goldberg, Bernhofer 2007). 
Groundwater occurs only in rhyolite rocks. 
Therefore, large fluctuations in groundwater 
levels can occur within a short time period 
(Gerold et al. 1998).

In the upper surface of the paleorhyolite 
(porphyry), weathering products exhibit 
strong cohesive properties. During the ear-
ly cretaceous, small low-binder sandstones 
with embedded clay horizons were present 
in the area. These sandstones are effective 
in water management. At the layer boundar-
ies of the sandstone and the porphyry layer 
sources, water discharges are also recorded. 
Moreover, further marine sandstone depos-
its have been preserved from the transitional 
time (i.e. the early cretaceous to the late cre-
taceous), with weathering products that are 
prone to frost formation.

The Wernersbach area is used exclusively 
for forestry purposes. Spruce is widely pre-
dominant and is used to strike other conifers 
and deciduous trees. In order to improve 
growth conditions for the forest stands at loca-
tions affected by water pollution, a dense net-

Fig. 1. Wernersbach catchment



Meteorology Hydrology and Water Management
Volume 8 | Issue 1

56

work of artificial drainage trenches has been 
constructed (Bernhofer 2002).

The natural conditions of the Wernersbach 
catchment make it a suitable study area for 
the quantification and measurement of the wa-
ter balance in space and time. The water bal-
ance components of the catchment are pre-
sented in Table 1.

This study uses climate and hydrological 
data from the Wernersbach catchment collect-
ed from 2001 to 2009. All data was initially 
stored on-site in data loggers and has a temporal 
resolution of one day. Field observation meas-
urements used for the runoff models include 
the depth to groundwater table, precipitation, 
soil moisture at 30 and 60 cm and discharge.

2.1. ARTIFICIAL 
NEURAL NETWORK 
ANN technology is a computational approach 
inspired by studies of the brain and nervous 
systems (Luk et al. 2001). The ANN technique 
has a number of interconnected processing 
elements that generally operate in parallel 
with regular configurations. These neural net-
works are capable of modelling both linear 
and non-linear systems (Riad et al. 2004).

There are two types of artificial neural 
networks: (i) the feed-forward neural net-
work; (ii) recurrent/feedback networks. 
The multi-layer field network (MLF) is a typ-
ical feed-forward network where adjusted 
weight coefficients are calculated and out-
puts are highly accurate (Svozil et al. 1997). 
A very simple model based on historical data, 
namely, drawing a line to best separate be-
tween critical and non-critical conditions, 
is used for the MLF. The possible applications 
of this model include flash flood susceptibil-

ity analysis, evaluating the multi-correlation 
function between rainfall and runoff, soil 
moisture and the precipitation of a hydrolog-
ical catchment area.

An MLF neural network consists of neu-
rons that are ordered into layers. The first 
layer is denoted as the input layer, the last 
layer is the output layer, and the layers in be-
tween are hidden layers (Svozil et al. 1997). 
The model used in this study, present-
ed in Figure 2, has one hidden layer with 
a sigmoidal activation function, and a line-
ar activation function in the output layer. 
The network is prepared using a simple error 
backpropagation algorithm. 

2.2. REGRESSION ANALYSIS
The regression analysis in its simplest form 
uses two variables, one as the dependent vari-
able and the other as the independent varia-
ble, thus making it possible to study the cause 
and effect of the relationship. A linear regression 
model that involves more than one independent 
variable is known as a multiple linear regression 
(MLR) model. Multiple regression analysis 
is used to establish the statistical relationship 
between one dependent variable  and one 
or more independent variables X1, X2, …, Xp 
and is of the form (1) (Jaya Rami Reddy 2013) 
the multiple regression equation. The term lin-
ear is used because equation (1) is a linear func-
tion of the unknown parameters b0, b1, …, bp:

Y = b0 + b1 X1 + b2 X2 + … + bp Xp (1)

In non-linear regression analysis, the depend-
ent variables are modelled as a non-linear func-
tion of the model parameters and one or more 

independent variables (Bilgili 2010). The multiple 
non-linear regression model (MNLR) is a simple 
and efficient method in producing more accurate 
maximum daily discharge predictions compared 
to the ANN, the adaptive neuro-fuzzy interference 
system and the MLR (Rezaeianzadeh et al. 2014). 
The multiple non-linear regression equation gen-
erally is of the form (Jaya Rami Reddy 2013):

Y = b0 X1
b1

 X2
b2 … Xp

bp (2)

where b0, b1, …, bp are the parameters of the  
non-linear relationship. Multiple non-linear re-
gression problems can be linearized  using simple  
logarithmic transformation by taking the loga-
rithms of both sides of equation (2) (Jaya Rami 
Reddy 2013):

lnY = lnb0 + b1 lnX1 + b2 lnX2 + … + bp lnXp (3)

Moreover, the regression of lnY on lnX1,  
lnX2, …, lnXp is utilized for estimating b0, b1, …, bp.

2.3. MODEL VERIFICATION
A statistical evaluation method can pro-
vide an indication of the best model, while 
the graphical and hydrological interpretation 
of the presented datasets and models can eval-
uate this simplistic indication. Based on their 
soundness and robustness, traditional log-log 
rating curves have been observed to be superior, 
regardless of their poor goodness-of-fit statistics 
(Abrahart et al. 2011).

2.4. AREAL PRECIPITATION
The Thiessen polygon method introduced 
by Thiessen (1911), is used here to determine 
the average amount of precipitation over the study 
area. It is a graphical technique that calculates areas 
relating to specifically placed rain gauges, deriving 
an areal value plus a reference, resulting in poly-
gons within polygons (see Fig. 3).

3. GENERAL STUDY 
APPROACH
We assume an ideal prognosis using the observed 
precipitation and soil moisture data. This ideal prog-
nosis of the meteorological input allows us to neglect 
prognosis uncertainties, which are mostly connect-
ed to modelled precipitation from dynamic weath-
er forecast models. Therefore, the resulting model 
performances are mainly defined by the approaches 
themselves, rather than by accuracy of the data.

The basic architecture of the approach used 
in this study is presented in Figure 2. The three 

Fig. 2. Modelling process

Table 1. Water balance components of the catchment Wernersbach (Goldberg, Bernhofer 2007)

Water Balance Components Measure Unit(s)

Precipitation 847 mm

Runoff 240 mm

Evapotranspiration 607 mm

Minimum runoff (mean) 2.5 litre/sec

Mean runoff 35 litre/sec

Maximum runoff (mean) 1,228 litre/sec

Maximum runoff (estimated) 80,00-10,000 (13.08.2002) litre/sec
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white boxes demonstrate the three basic steps, 
i.e. the data, the data-driven model and the re-
sult. The three grey boxes show the sub-rou-
tines. The first step consists of inputs that can 
influence the output, i.e. precipitation, previ-
ous day discharge, and soil moisture. The sec-
ond step consists of the models used to analyze 
the inputs. The last or output step consists 
of the predicted values or results, i.e. present 
day discharge. 

The validation strategy was used to cre-
ate statistically robust results from 100 ran-
domly chosen subsets, in order to quantify 
the impact of extremes in the prediction. 
Performance indices were used to compare 
the performance of both models, namely 
the coefficient of determination (4), the root 
mean square error (RMSE) (5) and the mean 
absolute percentage error (MAPE) (6).

(4)

(5)

(6)

In the above equations, yi represents the ob-
served water discharge,  represents the forecast-
ed water discharage,  represents the average 
observed water discharge and average predicted 
water discharge respectively, and n represents 
the number of observations in both calibration 
and validation stages.

The R-squared (R2) value was used to meas-
ure how close the data is to the fitted regression 
line. It provides information on the strength 
of the linear relationships between the observed 
and predicted values. Moreover, the RMSE 
(5) represents the prediction of the errors 
in the model.

All analysis was performed using the R pro-
gramming package. The Neuralnet R package 
was used for the ANN model. For the MLR 
model, an in-house script was written. The ANN 
model exhibited higher computing times due 
to the training of the neural network. One catch-
ment at a time was used for both models due 
to the minimal amount of computer resources 
required for the MLR (statistical) and the ANN 
(data-driven). The model ensembles were then 
used to identify the best estimate for a flood 
event.

4. RESULTS 
AND DISCUSSION
The areal significance to the point rainfall values 
assigned by the Thiessen polygon method for five 
rain gauges are depicted in Figure 3. The respec-
tive sizes of the areas are reported in Table 2.

A relationship was derived between pre-
cipitation,  soil moisture and discharge, con-
sidering days when precipitation was greater 
than 0.1 mm, and using daily soil moisture data 
and discharge values for previous days. During 
2001-2009, 1,804 days were observed to have 
a precipitation value of more than 0.1 mm per 
day. In order to reduce random errors from us-
ing linear regression only once, the 1,804 events 
with precipitation values, rainfall-runoff, and soil 
moisture were randomly divided into two halves 
100 times.

According to the results of the calibration 
and validation data sets, the median R2 value for 
both data sets was observed as 0.887. This indi-
cates a strong correlation between the consid-
ered variables. In addition, both data sets exhib-
it the same distribution shape (Figs. 4 and 5) for 
the determined R2 values.

The logarithmic linear dependence can be 
expressed as follows:

lnQ(0) = 0.228 lnQ(–1) + 0.002 Sw(–1) + 
0.9 lnP(0) – 0.215 (7)

where Q represents discharge, Sw represents soil 
moisture, P represents precipitation, the indices 
0 and –1 denote the current and previous day 
respectively.

The resultant model is characterized 
by the values of the selected performance indi-
ces presented in Table 3.

In Figure 6, Qmod represents the modelled 
specific discharge, while Qobs represents the ob-
served specific discharge. Both values are con-
verted to mm, in order to have the same units 
as precipitation and soil moisture. The conver-
sion to discharge involves multiplying the spe-
cific discharge by the size of the Wernersbach 
catchment. The black line in Figure 6 represents 
the trend line without considering the extreme 
values, while the green line represents the trend 
line when extreme values are considered.

The trend lines demonstrate a consistency 
in the observed maximum values, particularly 
for the validation data set. Both data sets suggest 
that the model tends to slightly overestimate high 
flood events by 1.01% and 14% for the validation 
and the calibration data sets, respectively. 

The range of predicted errors between 
the simulated value and the measured values 

for the statistical regression model is shown 
in Figure 8. 

It should be noted that 1,798 rain events from 
the total 1,804 lie within the range of 0-13 mm,  
with the maximum (1,593 events) within 
in the range of 0-1 mm.

A good correlation between the simulated 
and measured specific discharge is observed for 
the range of 0-13 mm. In contrast, greater uncer-
tainty is associated with discharge above 13 mm, 
due to the small number of precipitation events 
within 13-61 mm (only 6 events).

High uncertainty indicates a high demand 
for data and a small and responsive character-
ization of the catchment area. Under such con-
ditions, it is difficult to predict any extremes.

The discharge value in the Wernersbach 
catchment depends primarily on precipitation. 
A close relationship between all three param-
eters is exhibited. A significant input from 
the soil moisture parameter can be observed 
during events with high discharge values. 
Using the median absolute deviation (MAD) 
method (Leys et al. 2013), 198 precipitation 
events were determined as “outliers” or bankful 
discharge. These events suggest a rise in dis-
charge and flood, or high flood, events. Here, 
we denote them as extreme events.

Following its successful launch, the ANN mod-
el was validated. The MLR and ANN models’ 
results are assessed with a statistical representation 
of the histograms and Q-Q plots. The data in both 
models runs are with and without extremes 
(the 198 events described earlier were excluded). 
Based on this, different scenarios are analyzed. 

A perfect bell-shaped curve representing 
a normal distribution is observed where the al-
located dataset does not include extreme values. 
The non-linear characteristic of the rainfall-run-
off process is normalized using a logarithmic 
transformation. This transformation is applied 
in order to provide an improved fit of the  
R2 values to the normal distribution (Fig. 9). 

The MAPE value is observed as 153% for 
the MLR model and 140% for the ANN mod-
el. The MAPE errors demonstrate that the ANN 
model has a smaller variance in predic-
tion errors than the MLR model compared 
to the original dataset scale.

We find that both models overestimate the sim-
ulated values. The dataset validation with extreme 
values for the MLR model is equal to 14%, while 
the ANN model demonstrates a lower error value 
of 0.7% for the dataset validation with extreme 
values and 0.5% without extremes values.

The above result implies that the ANN 
model better generalizes the variability of high 
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floods in the observation period compared 
to the MLR regression model. The results from 
the former can be considered more satisfacto-
ry over the whole period, with a large annual 
variability of extreme events. The estimates are 
sufficient to provide on-time warnings with 
minimal errors. 

The snowmelt factor was not considered 
as influential in this study. However, in-
cluding climate change as a driving factor 

and considering studies for an earlier initiation 
of the snowmelt season (Schneider, Schönbein 
2005; Blöschl et al. 2017), increases the dura-
tion of the snowmelt season.  Thus, it is impor-
tant to include snow/ice –melt and temperature 
in the models in order to provide near real-time 
forecasts. This will be duly addressed in our fu-
ture and on-going studies.

Soil moisture is often found to have a trig-
gering influence on floods and is included 

in the models, depending on the availabil-
ity of the measured input. In the typical da-
ta-poor conditions that characterize flash flood 
forecasting and warnings, surrogate indexes 
that implicitly consider the soil moisture ini-
tial state, are often extremely useful.

5. CONCLUSION
In this study, we investigate an approach 
incorporating data-driven modelling for 
the Wernersbach catchment with three ob-
served parameters: (i) soil moisture, (ii) pre-
cipitation of the current day and (iii) precip-
itation from the previous day. An alternative 
model is run to compare and validate the re-
sults. Both models are on loop fast enough 
to include several statistical analysis methods, 
with an efficiency in forecasting results for 
time stringent cases. Based on the catchment 
characteristics, the model based on regression 
analysis is determined as a more effective sta-
tistical method for the estimation of flood 
discharge compared to other methods. 

A more detailed alternative approach would 
involve the use of hydraulic formulae (e.g. Man-
ning equation) or one- or two-dimensional hy-
draulic models (e.g. the Saint-Venant equations) 
to convert historical flood levels into historical 
discharges (Benito et al. 2004). Moreover, flash 
flood guidance, which tags the rainfall accu-
mulation needed to produce a flood of a given 
magnitude according to current soil moisture 
conditions, has proven useful for ungauged ba-
sins (Borga et al. 2011).

For the Wernersbach catchment area, our 
results show that data-driven methods are a fea-
sible alternative to the flash flood guidance ap-
proach. the ANN model is generally preferable, 
even for extreme events, compared to the MLR 
approach.

However, the considered temporal scale 
(2001-2009) do not include significant 
amount of past major hydrological extreme 
events and exclusion of uncertainties by cli-
mate change limits our study in various as-
pects. Despite these limitations, we are confi-
dent ANN model is better suited to the tasks 
of rainfall-runoff and flood forecasting over 
traditional MLR approach.

Nevertheless, as per our current knowledge, 
this study is the only one of its kind done over 
the Wernersbach catchment and is presumed 
to build foundation for further application 
of ANN models in research focusing on the in-
fluence of spatial and temporal rainfall patterns 
on the estimation of rainfall thresholds, as well 
as the prediction of soil moisture.

Fig. 7. Dependencies between the simulated and the measured values for the validation data set 

of the statistical regression model

Fig. 8. Box plot showing the range of errors between the simulated and measured values for the sta-

tistical regression model
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Fig. 9a-c. Distribution of R2 and Q-Q plots: a) Including extreme data for the ANN model run; b) including extreme data for the ANN model run; c) including 

extreme data for the MLR model run

a) ANN normal

b) ANN model run over logarithm

c) MLR normal
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Fig. 9d-f. Distribution of R2 and Q-Q plots: d) without extreme data for the MLR model run; e) including extreme data for the MLR analysis on the dataset 

run over logarithm; f) without extreme data the MLR analysis on the dataset run over logarithm

d) MLR normal without extremes

e) MLR model run over logarithm

f) MLR model run over logarithm without extremes
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