PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency‑dependent energy attenuation and velocity dispersion in periodic layered media

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to Brajanovski periodic layered model, a fractural medium can be equivalent to layered media with periodic distribution of fractural layers and background layers, but the analytical solution given by Brajanovski can only interpret the dispersion and attenuation effects of single characteristic unit model. In order to study the dispersion and attenuation features of multiple characteristic units, forward modeling methods are needed. Based on the theory of two-phase medium, Biot deduced the propagation equation of longitudinal waves in fluid-saturated porous media. However, there are two problems in the forward modeling using time-domain equation. One is the influences of boundary reflection, and the other is the introduction of cumulative error. For convenience, time-domain equation is rewritten in the frequency domain, thus constructing a one-dimensional rock physics model. Then, forward method is used to study the dispersion and attenuation features of fluid-saturated medium. Numerical simulation results are found to be in good agreement with the analytical solution. Furthermore, the frequency-domain forward method can analyze the velocity dispersion and energy attenuation of longitudinal waves in any multilayered fracture medium. By analyzing those numerical simulation results, it can be obtained that, as the length of characteristic unit increases or the number of characteristic unit decreases, both the starting frequency of dispersion and the peak frequency of attenuation shift to low, whatever the attenuation peaks are equal. In addition, the effects of porosity, permeability and fluid saturation on energy attenuation and velocity dispersion are also studied. Finally, the stress field and displacement field distributions of fluid-saturated fractural medium are given by the frequency-domain forward modeling method.
Czasopismo
Rocznik
Strony
799--811
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • China University of Petroleum (East China), Qingdao, People’s Republic of China
  • China University of Petroleum (East China), Qingdao, People’s Republic of China
autor
  • China University of Petroleum (East China), Qingdao, People’s Republic of China
Bibliografia
  • 1. Ba J, Carcione JM, Cao H et al (2012) Velocity dispersion and attenuation of P waves in partially-saturated rocks: wave propagation equations in double-porosity medium. Chin J Geophys 55(1):219–231.
  • 2. Ba J, Zhao J, Carcione JM et al (2016) Compressional wave dispersion due to rock matrix stiffening by clay squirt flow. Geophys Res Lett 43(12):6186–6195.
  • 3. Biot MA (1939) Non-linear theory of elasticity and the linearized case for a body under initial stress. Philos Mag 27(183):468–489.
  • 4. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164.
  • 5. Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Ame 28(2):168–178.
  • 6. Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191.
  • 7. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498.
  • 8. Brajanovski M, Gurevich B, Schoenberg M (2005) A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures. Geophys J R Astron Soc 163(1):372–384.
  • 9. Brown RJS, Korringa J (1975) On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4):608–616.
  • 10. Chapman M (2003) Frequency dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51(5):369–379.
  • 11. Chapman M, Zatsepin SV, Crampin S (2002) Derivation of a microstructural poroelastic model. Geophys J R Astron Soc 151(2):427–451.
  • 12. Dvorkin J, Nolenhoeksema RC, Nur A (1994) The squirt-flow mechanism: macro-scopic description. Geophysics 59(3):428–438.
  • 13. Dvorkin J, Gutierrez MA, Grana D (2014) Seismic reflections of rock properties. Cambridge University Press, Cambridge.
  • 14. Fang X, Shang X, Fehler M (2013) Sensitivity of time-lapse seismic data to fracture compliance in hydraulic fracturing. Geophys J Int 195(3):1843–1861.
  • 15. Galvin RJ, Gurevich B (2003) Frequency-dependent anisotropy of porous rocks with aligned fractures. In: ASEG 16th geophysical conference and exhibition, Adelaide.
  • 16. Galvin RJ, Gurevich B (2009) Effective properties of a poroelastic medium containing a distribution of aligned cracks. J Geophys Res Solid Earth 114(1):1–11.
  • 17. Gassmann F (1951) Über die Elastizität Poröser Medien: Vierteljschrift.der naturforschenden. Gesellschaft in zürich 96:1–23
  • 18. Hudson JA, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J R Astron Soc 124(1):105–112.
  • 19. Masson YJ, Pride SR (2010) Finite-difference modeling of Biot’s poroelastic equations across all frequencies. Geophysics 75(2):33–41.
  • 20. Mavko GM, Nur A (1979) Wave attenuation in partially saturated rocks. Geophysics 44(2):161–178.
  • 21. Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics 75(5):147–164.
  • 22. Norris AN (1993) Low-frequency dispersion and attenuation in partially saturated rocks. J Acoust Soc Am 94(1):359–370.
  • 23. Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109(1):1–19.
  • 24. Rubino JG, Ravazzoli CL, Santos JE (2009) Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks. Geophysics 74(1):1–13.
  • 25. Schoenberg M, Douma J (1988) Elastic-wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect 36(6):571–590.
  • 26. Schoenberg M, Sayers CM (2012) Seismic anisotropy of fractured rock. Geophysics 60(1):204–211.
  • 27. Shen Y, Dvorkin J, Li Y (2018) Improving seismic Qp estimation using rock physics constraints. Geophysics 83(3):1–56.
  • 28. White JE, Mihailova N, Lyakhovitsky F (1975) Low-frequency seismic waves in fluid-saturated layered rocks. J Acoust Soc Am J 11(10):654–659.
  • 29. Wu J, Wu G (2018) Quantitative virtual rock physics method in one-dimensional frequency domain. Pet Geophys Prospect 53(1):105–112.
  • 30. Yang J, Song E, Chen Z (2003) Analysis of two compression waves of saturated soil by finite difference method of u-w equation. Chin J Appl Mech 20(4):89–92.
  • 31. Zhang H, He B (2015) Propagation and attenuation of P-waves in patchy saturated porous media. Appl Geophys 12(3):401–408.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7404558a-09d0-49e8-abbd-083fd106f822
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.