Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Lattice structures are becoming more commonly used in the design of components for additive manufacturing. This is due to their ability to reduce the weight of manufactured parts, minimize material consumption, and achieve specific properties by modifying their geometry. As the applications of lattice structures continue to evolve, it is essential to determine whether the process parameters used in the PBF-LB (Laser Beam Powder Bed Fusion) process for manufacturing these structures should be the same as or different from those used for larger cross-sectional components. An analysis of the existing litera ture revealed insufficient data on this subject, which inspired this study. Experiments conducted using AISI 316L stainless steel showed that lattice structures can be produced with significantly lower volumetric energy density, while maintaining a high relative material density. In the experiment on lattice structures made of BCCZ and gyroid unit cells, a relative mate rial density of over 99.5% was achieved with a volumetric energy density of approximately 33 J/mm3. These findings are significant for the fabrication of lattice structures. The lower volumetric energy density typically allows for greater geometric accuracy and reduced internal stresses. Furthermore, it has been proven that the nodes of the structure are critical places exposed to porosity formation.
Czasopismo
Rocznik
Tom
Strony
no. art. 204, s. 1--19
Opis fizyczny
Bibliogr. 36 poz., il., tab., wykr.
Twórcy
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
- Silencions sp. z o.o., Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
autor
- Silencions sp. z o.o., Wroclaw, Poland
Bibliografia
- 1. Maconachie T, et al. SLM lattice structures: properties, performance, applications and challenges. Mater Des. 2019. https://doi.org/10.1016/j.matdes. 2019.108137.
- 2. Gokuldoss PK, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials. 2017. https:// doi.org/10.3390/ma100 60672.
- 3. Alfaify A, Saleh M, Abdullah FM, Al-Ahmari AM. Design for additive manufacturing: a systematic review. Sustainability (Switzerland). 2020. https://doi.org/10.3390/ SU12197936.
- 4. Salman OO, et al. Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J Manuf Process. 2019;45:255-61. https://doi.org/10.1016/j.jmapro.2019.07.010.
- 5. Saeidi K, Gao X, Zhong Y, Shen ZJ. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng, A. 2015;625:221-9. https://doi.org/10.1016/j.msea.2014.12.018.
- 6. Huang M, Zhang Z, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol. 2019;104(5-8):2117-31. https://doi.org/10.1007/s00170-019- 03928-3.
- 7. Ahmed N, Barsoum I, Haidemenopoulos G, Al-Rub RKA. Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: a review. J Manuf Process. 2022;75:415 34. https:// doi.org/10.1016/j.jmapro. 2021.12. 064.
- 8. Sun Z, Tan X, Tor SB, Yeong WY. Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Des. 2016;104:197-204. https://doi.org/10.1016/j.matdes. 2016. 05. 035.
- 9. Yakout M, Elbestawi MA, Veldhuis SC. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J Mater Process Technol. 2019;266:397-420. https://doi.org/10.1016/j.jmatp rotec. 2018. 11. 006.
- 10. Vallejo ND, Lucas C, Ayers N, Graydon K, Hyer H, Sohn Y. Process optimization and microstructure analysis to understand laser powder bed fusion of 316l stainless steel. Metals (Basel). 2021. https://doi. org/10.3390/met11050832.
- 11. Tucho WM, Lysne VH, Austbø H, Sjolyst-Kverneland A, Hansen V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J Alloys Compd. 2018;740:910-25. https://doi.org/10.1016/j.jallcom.2018.01.098.
- 12. Agrawal AK, Meric de Bellefon G, Thoma D. High-throughput experimentation for microstructural design in additively manufac tured 316L stainless steel. Mater Sci Eng A. 2020. https:// doi. org/ 10. 1016/j. msea. 2020. 139841.
- 13. Liverani E, Toschi S, Ceschini L, Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol. 2017;249:255–63. https://doi.org/10.1016/j. jmatp rotec. 2017. 05. 042.
- 14. Le KQ, Tang C, Wong CH. On the study of keyhole-mode melting in selective laser melting process. Int J Thermal Sci. 2019. https://doi.org/10.1016/j.ijthermalsci. 2019. 105992.
- 15. Röttger A, et al. Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int J Adv Manuf Technol. 2020;108(3):769-83. https://doi.org/10.1007/s00170-020-05371-1.
- 16. Mussatto A, Groarke R, O’Neill A, Obeidi MA, Delaure Y, Brabazon D. Influences of powder morphology and spreading param eters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing. Addit Manuf. 2021. https:// doi.org/10.1016/j.addma. 2020.101807.
- 17. Mertens R, Dadbakhsh S, Van Humbeeck J, Kruth JP. Application of base plate preheating during selective laser melting. Procedia CIRP. 2018. https:// doi. org/ 10. 1016/j. procir. 2018. 08. 002.
- 18. Iebba M, et al. Influence of powder characteristics on formation of porosity in additive manufacturing of Ti-6Al-4V components. J Mater Eng Perform. 2017;26(8):4138-47. https://doi.org/10.1007/s11665- 017-2796-2.
- 19. Pleass C, Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Addit Manuf. 2018;24:419-31. https://doi.org/10.1016/j.addma.2018. 09. 023.
- 20. Carlton HD, Haboub A, Gallegos GF, Parkinson DY, MacDowell AA. Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng, A. 2016;651:406-14. https://doi.org/10.1016/j.msea. 2015.10.073.
- 21. Faisal S, Mtech SY, Mulay A, Sawant M. Evaluation of SS 316L TPMS lattice structures manufactured using SLM process. In: Proceedings of the 2nd Indian International Conference on Indus trial Engineering and Operations Management Warangal, Telangana, India, August 16-18, 2022.
- 22. Zhong T, He K, Li H, Yang L. Mechanical properties of light weight 316L stainless steel lattice structures fabricated by selective laser melting. Mater Des. 2019. https://doi.org/10.1016/j. matdes. 2019. 108076.
- 23. Yan C, Hao L, Hussein A, Raymont D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf. 2012;62:32-8. https://doi. org/10.1016/j.ijmachtools. 2012. 06.002.
- 24. Shahabad SI, et al. On the effect of thin-wall thickness on melt pool dimensions in laser powder-bed fusion of Hastelloy X: numerical modeling and experimental validation. J Manuf Process. 2022;75:435-49. https://doi.org/10.1016/j.jmapro. 2022. 01. 029.
- 25. Cao Q, Bai Y, Zhang J, Shi Z, Fuh JYH, Wang H. Removability of 316L stainless steel cone and block support structures fabricated by selective laser melting (SLM). Mater Des. 2020. https://doi.org/10.1016/j.matdes.2020.108691.
- 26. Piazza S, Merrigan B, Dowling DP, Celikin M. The effects of geometry and laser power on the porosity and melt pool formation in additively manufactured 316L stainless steel. Int J Adv Manuf Technol. 2020;111:1457-70. https://doi.org/10.1007/s00170-020- 06196-8.
- 27. Lin K, Yuan L, Gu D. Influence of laser parameters and complex structural features on the bio-inspired complex thin-wall structures fabricated by selective laser melting. J Mater Process Technol. 2019;267:34-43. https://doi.org/10.1016/j.jmatprotec. 2018. 12. 004.
- 28. Niendorf T, Brenne F, Schaper M. Lattice structures manufactured by SLM: on the effect of geometrical dimensions on micro structure evolution during processing. Metall Mater Trans B. 2014;45(4):1181-5. https://doi.org/10.1007/s11663-014-0086-z.
- 29. Carpenter Additive – stainless steel 316L datasheet – Powder Range 316L. https:// www. Carpentera/dditive.com/hubfs/Resources/datasheets% 202023/Powde rRange_316L_Datas heet. pdf. Accessed 27 Feb 2024.
- 30. Spierings AB, Levy G. Comparison of density of stainless steel 316L parts produced with selective laser melting using differ ent powder grades. In: 20th Annual International Solid Freeform Fabrication Symposium, SFF 2009.
- 31. Al-Ketan O, Abu Al-Rub RK. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater Des Process Commun. 2021. https://doi.org/10.1002/mdp2.205.
- 32. de Terris T, et al. Optimization and comparison of porosity rate measurement methods of selective laser melted metallic parts. Addit Manuf. 2019. 28:802-13. https://doi.org/10.1016/j.addma. 2019. 05. 035.
- 33. Chen H, Sun Y, Yuan W, Pang S, Yan W, Shi Y. A review on discrete element method simulation in laser powder bed fusion additive manufacturing. Chin J Mech Eng: Addit Manuf Front. 2022;1(1): 100017. https://doi.org/ 10.1016/j.cjmeam. 2022.100017.
- 34. Xie D, et al. A review on distortion and residual stress in additive manufacturing. Chin J Mech Eng: Addit Manuf Front. 2022;1(3): 100039. https://doi.org/10.1016/j.cjmeam. 022.100039.
- 35. Song C, Yang Y, Liu Y, Luo Z, Yu JK. Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. Int J Adv Manuf Technol. 2015;78(5-8):885-93. https://doi.org/10.1007/s00170-014-6689-3.
- 36. Clijsters S, Craeghs T, Moesen M, Kruth J.-P. Optimization of thin wall structures in SLM. In: Direct Digital Manufacturing Conference, Berlin, Germany, March 14-15, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73f99014-3c19-4748-81e4-eae7a81b32cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.