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Abstract. We investigate the dependence of the L1 → L∞ dispersive estimates for
one-dimensional radial Schrödinger operators on boundary conditions at 0. In contrast
to the case of additive perturbations, we show that the change of a boundary condition at
zero results in the change of the dispersive decay estimates if the angular momentum is
positive, l ∈ (0, 1/2). However, for nonpositive angular momenta, l ∈ (−1/2, 0], the standard
O(|t|−1/2) decay remains true for all self-adjoint realizations.
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1. INTRODUCTION

We are concerned with the one-dimensional Schrödinger equation

iψ̇(t, x) = Hαψ(t, x), Hα := − d2

dx2 + l(l + 1)
x2 , (t, x) ∈ R× R+, (1.1)

with the angular momentum |l| < 1
2 and self-adjoint boundary conditions at x = 0

parameterized by a parameter α ∈ [0, π) (the definition is given in Section 2, see
(2.1)–(2.2) – for recent discussion of this family of operators see [1, 4]). More precisely,
we are interested in the dependence of the L1 → L∞ dispersive estimates associated
to the evolution group e−itHα on the parameters α ∈ [0, π) and l ∈ (−1/2, 1/2).

On the whole line such results have a long tradition and we refer to Weder [22],
Goldberg and Schlag [9], Egorova, Kopylova, Marchenko and Teschl [5], as well as the
reviews [10,18]. On the half line, the case l = 0 with a Dirichlet boundary condition
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was treated by Weder [23]. The case of general l and the Friedrichs boundary condition
at 0 (α = 0 in our notation)

lim
x→0

xl((l + 1)f(x)− xf ′(x)) = 0, l ∈
(
− 1

2 ,
1
2

)
, (1.2)

was recently considered in Kovařík and Truc [14] and they proved (see Theorem 2.4
in [14]) that

‖e−itH0‖L1(R+)→L∞(R+) = O(|t|−1/2), t→∞. (1.3)

It was proved in [13] that this estimate remains true under additive perturbations.
More precisely (see [13, Theorem 1.1]), let H = H0 + q, where the potential q is a real
integrable on R+ function. If in addition

1∫

0

|q(x)|dx <∞ and
∞∫

1

xmax(2,l+1)|q(x)|dx <∞, (1.4)

and there is neither a resonance nor an eigenvalue at 0, then
∥∥e−itHPc(H)

∥∥
L1(R+)→L∞(R+) = O(|t|−1/2), t→∞. (1.5)

Here Pc(H) is the orthogonal projection in L2(R+) onto the continuous spectrum
of H.

The main result of the present paper shows that the decay estimates (1.3) and (1.5)
are no longer true for α ∈ (0, π) if l ∈ (0, 1/2). In other words, this means that singular
rank one perturbations destroy these decay estimates if l ∈ (0, 1/2) (since the change
of a boundary condition can be considered as a rank one perturbation in the resolvent
sense). Namely, consider first the operator Hπ/2, which is associated with the following
boundary condition at x = 0:

lim
x→0

x−l−1(lf(x) + xf ′(x)) = 0, l ∈
(
− 1

2 ,
1
2

)
. (1.6)

Theorem 1.1. Let |l| < 1/2. Then

‖e−itHπ/2‖L1(R+)→L∞(R+) = O(|t|−1/2), t→∞, (1.7)

for all l ∈ (−1/2, 0], and

‖e−itHπ/2‖L1(R+,max(x−l,1))→L∞(R+,min(xl,1)) = O(|t|−1/2+l), t→∞, (1.8)

whenever l ∈ (0, 1/2). The last estimate is sharp.

In the remaining case α ∈ (0, π/2) ∪ (π/2, π), the decay estimate is given by the
next theorem.
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Theorem 1.2. Let |l| < 1/2 and α ∈ (0, π/2) ∪ (π/2, π). Then

‖e−itHαPc(Hα)‖L1(R+)→L∞(R+) = O(|t|−1/2), t→∞, (1.9)

for all l ∈ (−1/2, 0], and

‖e−itHαPc(Hα)‖L1(R+,max(x−l,1))→L∞(R+,min(xl,1)) = O(|t|−1/2), t→∞, (1.10)

whenever l ∈ (0, 1/2).
Notice that in the case l ∈ (0, 1/2) we need to consider weighted L1 and L∞ spaces

since functions contained in the domain of Hα might be unbounded near 0.
Finally, let us briefly outline the content of the paper. In the next section we define

the operator Hα and collect its basic spectral properties. Section 3 contains the proof
of Theorem 1.1. In particular, we compute explicitly the kernel of the evolution group
e−itHπ/2 and this enables us to prove (1.7) and (1.8) by using the estimates for Bessel
functions Jν (all necessary facts on Bessel functions are contained in Appendix A).
Theorem 1.2 is proved in Section 4. Its proof is based on the use of a version of the van
der Corput lemma, which is given in Appendix B. Also Appendix B contains necessary
facts about the Wiener algebras W0(R) and W(R). In the final section we formulate
some sufficient conditions for a function f(H) of a 1-D Schrödinger operator H to be
an integral operator.

2. SELF-ADJOINT REALIZATIONS AND THEIR SPECTRAL PROPERTIES

Let l ∈ (−1/2, 1/2) and denote by Hmax the maximal operator associated with

τ = − d2

dx2 + l(l + 1)
x2

in L2(R+). Note that τ is limit point at infinity and limit circle at x = 0 since |l| < 1/2.
Therefore, self-adjoint restrictions of Hmax (or in other words, self-adjoint realizations
of τ in L2(R+)) form a 1-parameter family. More precisely (see, e.g., [7] and also [1]),
the following limits

Γ0f := lim
x→0

Wx(f, xl+1), Γ1f := −1
2l + 1 lim

x→0
Wx(f, x−l) (2.1)

exist and are finite for all f ∈ dom(Hmax). Self-adjoint restrictions Hα of Hmax are
parameterized by the following boundary conditions at x = 0:

dom(Hα) = {f ∈ dom(Hmax) : sin(α) Γ1f = cos(α) Γ0f}, α ∈ [0, π). (2.2)

Note that the case α = 0 corresponds to the Friedrichs extension of Hmin = H∗max.
Let φ(z, x) and θ(z, x) be the fundamental system of solutions of τu = zu given by

φ(z, x) = C−1
l

√
πx

2 z−
2l+1

4 Jl+ 1
2
(
√
zx),

θ(z, x) = Cl

√
πx

2
z

2l+1
4

sin((l+ 1
2 )π)

J−l− 1
2
(
√
zx),

(2.3)
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where Jν is the Bessel function of order ν (see Appendix A) and

Cl =
√
π

Γ(l + 3
2 )2l+1 . (2.4)

The Weyl solution normalized by Γ0ψ = 1 is given by

ψ(z, x) = θ(z, x) +m(z)φ(z, x) = Cliz
2l+1

4

√
πx

2 H
(1)
l+1/2(

√
zx) ∈ L2(0,∞), (2.5)

where H(1)
ν is the Hankel function of the first kind [17, Chapter X.2], and

m(z) = −C2
l

(−z)l+1/2

sin((l + 1
2 )π)

, z ∈ C \ R+, (2.6)

is the Weyl function associated with H0. Here the branch cut of the root is taken
along the negative real axis. Notice that

dρ(λ) = C2
l

π
1[0,∞)(λ)λl+ 1

2 dλ (2.7)

is the corresponding spectral measure. It follows from (A.1) that

φ(z, x) = xl+1(1 + o(1)), θ(z, x) = x−l

2l + 1(1 + o(1)),

as x→ 0 and, moreover,

Γ0θ = Γ1φ = 1, Γ1θ = Γ0φ = 0.

Set

φα(z, x) := cos(α)φ(z, x) + sin(α)θ(z, x),
θα(z, x) := cos(α)θ(z, x)− sin(α)φ(z, x),

(2.8)

for all z ∈ C. Therefore, W (θα, φα) = 1 and

ψα(z, x) := θα(z, x) +mα(z)φα(z, x), mα(z) = m(z) cos(α) + sin(α)
cos(α)−m(z) sin(α) , (2.9)

is a Weyl solution normalized by W (ψα, φα) = 1. Hence

Gα(z;x, y) =
{
φα(z, x)ψα(z, y), x ≤ y,
φα(z, x)ψα(z, y), x ≥ y, (2.10)

is the Green’s function of Hα. The absolutely continuous spectrum remains unchanged,
σac(Hα) = [0,∞), but there is one additional eigenvalue

Eα = −
(

cot(α) cos(lπ)
C2
l

) 2
2l+1

(2.11)
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if π2 < α < π. Finally, since

Immα(z) = Imm(z)
| cos(α)−m(z) sin(α)|2 , (2.12)

we get the absolutely continuous part of the corresponding spectral measure of the
operator Hα:

ρ′α(λ)dλ = 1
π

Immα(λ+ i0)dλ

= 1
π

C2
l λ

l+1/2
1[0,∞)(λ)

(cos(α)− C2
l sin(α) tan(πl)λl+1/2)2 + C4

l sin2(α)λ2l+1 dλ.

(2.13)

3. PROOF OF THEOREM 1.1

Similar to the case α = 0 (see [14]), the kernel of the evolution group e−itHπ/2 can be
computed explicitly.
Lemma 3.1. Let |l| < 1/2. Then the evolution group e−itHπ/2 is an integral operator
for all t 6= 0 and its kernel is given by

[e−itHπ/2 ](x, y) = il−1/2

2t ei x
2+y2

4t
√
xy J−l−1/2

(xy
2t

)
, (3.1)

for all x, y > 0 and t 6= 0.
Proof. First, notice that

φπ/2(z, x) = θ(z, x), mπ/2(z) = −1/m(z),
and then define the spectral transformation U : L2(R+)→ L2(R+; ρπ/2) by

U : f 7→ f̂ , f̂(λ) :=
∫

R+

θ(λ, x)f(x)dx,

for every f ∈ L2
c(R+). Notice that U extends to an isometry on L2(R+) and its inverse

U−1 : L2(R+; ρπ/2)→ L2(R+) is given by

U−1 : g 7→ ǧ, ǧ(x) :=
∫

R+

θ(λ, x)g(λ)dρπ/2(λ),

for all g ∈ L2
c(R+; ρπ/2). Therefore, we get by using (2.3) and (2.13)

(e−(it+ε)Hπ/2f)(x) = (U−1e−(it+ε)λUf)(x) = (U−1e−(it+ε)λf̌)(x)

=
∫

R+

θ(λ, x)e−(it+ε)λ
∫

R+

θ(λ, y)f(y) dy dρπ/2(λ)

=
∫

R+

∫

R+

e−(it+ε)λ
√
xy

2 J−l− 1
2
(
√
λx)J−l− 1

2
(
√
λy)f(y) dy dλ.
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Since |l| < 1/2, (A.1) implies that

|J−l−1/2(k)| ≤ 2l+1/2

Γ(1/2− l)kl+1/2 (1 +O(k)) (3.2)

as k → 0. Noting that f ∈ L2
c(R+) and using (3.2), Fubini’s theorem implies

(e−(it+ε)Hπ/2f)(x) =
∫

R+

f(y)
∫

R+

e−(it+ε)λ
√
xy

2 J−l− 1
2
(
√
λx)J−l− 1

2
(
√
λy)dλ dy. (3.3)

The integral

[e−(it+ε)Hπ/2 ](x, y) :=
√
xy

2

∞∫

0

e−itλJ−l− 1
2
(
√
λx)J−l− 1

2
(
√
λy)dλ (3.4)

is known as Weber’s second exponential integral [21, §13.31] (cf. also [6, (4.14.39)])
and hence

(e−(it+ε)Hπ/2f)(x) = 1
2(ε+ it)

∞∫

0

e−
x2+y2
4(ε+it)

√
xyI−l− 1

2

( xy

2(ε+ it)

)
f(y)dy,

where Iν is the modified Bessel function (see [17, Chapter X] and in particular formula
(10.27.6) there)

Iν(z) =
∞∑

n=0

(z/2)ν+2n

n!Γ(ν +m+ 1) = e∓iνπ/2Jν(±iz), −π ≤ arg(z) ≤ π/2. (3.5)

The estimate (A.2) implies

|J−l−1/2(k)| ≤ k−1/2(1 +O(k−1)) (3.6)

as k →∞. Therefore, there is C > 0 which depends only on l and such that

|
√
kJ−l−1/2(k)| ≤ C

(
1 + k

k

)l
, k > 0. (3.7)

By (3.7) we deduce

√
xy

2|ε+ it|

∣∣∣∣e
− x2+y2

4(ε+it) I−l− 1
2

( xy

2(ε+ it)

)∣∣∣∣ ≤ C
√

1
|ε+ it|

∣∣∣∣1 + 2(ε+ it)
xy

∣∣∣∣
l

,

which is uniformly (wrt. ε) bounded on compact sets K ⊂⊂ R+ × R+. Thus we can
apply dominated convergence and hence the claim follows.
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In particular, we immediately arrive at the following estimate.

Corollary 3.2. Let |l| < 1/2. Then there is a constant C > 0 which depends only
on l and such that the inequality

∣∣[e−itHπ/2 ](x, y)
∣∣ ≤ C√

2t

(
2t+ xy

xy

)l
(3.8)

holds for all x, y > 0 and t > 0.

Proof. Applying (3.7) to (3.1), we arrive at (3.8).

Remark 3.3. For any fixed x and y ∈ R+, we get from (A.1)
∣∣∣e−itHπ/2(x, y)

∣∣∣ ∼
√
xy

2t

(xy
4t

)−l−1/2
= 1
t1/2−l

(xy
2

)−l
(3.9)

Moreover, in view of (A.1) one can see that
∣∣∣e−itHπ/2(x, y)

∣∣∣ ≥ cl tl−1/2
(xy

2

)−l
, (3.10)

whenever xy < t with some constant cl > 0, which depends only on l.

Now we are ready to prove our first main result.

Proof of Theorem 1.1. If l ∈ (−1/2, 0], then
(

2t+ xy

xy

)l
≤ 1

for all x,y > 0 and t ≥ 0. This immediately implies (1.7).
Assume now that l ∈ (0, 1/2). Clearly,

2t+ xy

xy
= 1 + 2 t

xy
≤ 3tmax(x−1, 1) max(y−1, 1)

for all t ≥ 1 and x, y > 0. Indeed, the latter follows from the weaker estimate

t

xy
≤ tmax(x−1, 1) max(y−1, 1), t ≥ 1, x, y > 0,

which is equivalent to 1 ≤ max(x, 1) max(y, 1) for all x, y > 0. Therefore,
(

2t+ xy

xy

)l
≤ 3tl max(x−l, 1) max(y−l, 1), t ≥ 1, x, y > 0,

which proves (1.8). Remark 3.3 shows that (1.8) is sharp.
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4. PROOF OF THEOREM 1.2

Let us consider the following improper integrals:

I1(t;x, y) := √xy
∫

R+

e−itk2
Jl+ 1

2
(kx)Jl+ 1

2
(ky) Immα(k2) k−2ldk, (4.1)

I2(t;x, y) := √xy
∫

R+

e−itk2
Jl+ 1

2
(kx)J−l− 1

2
(ky) Immα(k2) kdk, (4.2)

I3(t;x, y) := √xy
∫

R+

e−itk2
J−l− 1

2
(kx)J−l− 1

2
(ky) Immα(k2) k2l+2dk, (4.3)

where x, y > 0 and t 6= 0. Moreover, here and below we shall use the convention
Immα(k2) := Immα(k2 + i0) = limε↓0 Immα(k2 + iε) for all k ∈ R. Denote the
corresponding integrand by Aj , that is, Ij(t) =

∫
R+

e−itk2
Aj(k;x, y)dk. Our aim is to

use Lemma B.2 (plus the remarks after this lemma) and hence we need to show that
each Aj belongs to the Wiener algebra W(R), that is, coincide with a function which
is the Fourier transform of a finite measure.

We also need the following estimates, which follow from (2.13)

Immα(k2) =




C2
l |k|2l+1, α = 0,
cos2(πl)
C2
l

sin2(α) |k|−2l−1 +O(|k|−4l−2), α 6= 0,
k →∞, (4.4)

and

Immα(k2) =





C2
l

cos(α)2 |k|2l+1 +O(|k|4l+2), α 6= π/2,

C−2
l cos2(πl)|k|−2l−1, α = π/2,

k → 0. (4.5)

4.1. THE INTEGRAL I1

Consider the function

J(r) :=
√
r Jl+ 1

2
(r) = rl+1

2l+1/2

∞∑

n=0

(−r2/4)n
n!Γ(ν + n+ 1) , r ≥ 0.

Note that J(r) ∼ rl+1 as r → 0 and J(r) =
√

2
π sin(r− lπ

2 ) +O(r−1) as r → +∞ (see

(A.2)). Moreover, J ′(r) ∼ rl as r → 0 and J ′(r) =
√

2
π cos(r− lπ

2 )+O(r−1) as r → +∞

(see (A.4)). In particular, J̃(r) := J(r)−
√

2
π sin(r− lπ

2 ) is in H1(R+). Moreover, we can

define J(r) for r < 0 such that it is locally in H1 and J(r) =
√

2
π sin(r− lπ

2 ) for r < −1.
By construction we then have J̃ ∈ H1(R) and thus J̃ is the Fourier transform of an
integrable function (see Lemma B.3). Moreover, sin(r − lπ

2 ) is the Fourier transform
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of the sum of two Dirac delta measures and so J is the Fourier transform of a finite
measure. By scaling, the total variation of the measures corresponding to J(kx) is
independent of x.

Next consider the function

F (k) := Immα(k2)
|k|2l+1 = C2

l

(cos(α)− C2
l sin(α) tan(πl)|k|2l+1)2 + C4

l sin2(α)|k|4l+2 .

By Corollary B.6, F is in the Wiener algebra W0(R).
Now it remains to note that

I1(t) =
∫

R+

e−itk2
A1(k2;x, y)dk =

∫

R+

e−itk2
J(kx)J(ky)F (k)dk, (4.6)

and applying Lemma B.2 we end up with the estimate

|I1(t;x, y)| ≤ Ct−1/2, t > 0, (4.7)

with a positive constant C > 0 independent of x, y > 0.

4.2. THE INTEGRAL I2

Assume first that l ∈ (0, 1/2) and write

A2(k2;x, y) = J(kx)Y (ky) χl(k)
χl(ky)

Immα(k2)
χl(k) ,

where

J(r) =
√
r Jl+ 1

2
(r), Y (r) = χl(r)

√
r J−l− 1

2
(r), χl(r) = |r|l

1 + |r|l .

The asymptotic behavior (4.4) and (4.5) of Immα shows that

M(k) = Immα(k2)
χl(k) =

{
|k|1+l, k → 0,
|k|−2l−1, |k| → ∞,

and hence M ∈ H1(R), which implies that M is in the Wiener algebra W0(R).
We continue J(r), Y (r) to the region r < 0 such that they are continuously

differentiable and satisfy

J(r) =
√

2
π

sin
(
r − πl

2

)
, Y (r) =

√
2
π

cos
(
r + πl

2

)
,

for r < −1. Then J̃(r) := J(r)−
√

2
π sin(r − πl

2 ) and Ỹ (r) := Y (r)−
√

2
π cos

(
r + πl

2
)

are in H1(R). In fact, they are continuously differentiable and hence it suffices to look
at their asymptotic behavior. For r < −1 they are zero and for r > 1 they are O(r−1)
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and their derivative is O(r−1) as can be seen from the asymptotic behavior of Bessel
functions (see Appendix A). Hence both J and Y are Fourier transforms of finite
measures. By scaling the total variation of the measures corresponding to J(kx) and
Y (ky) are independent of x and y, respectively.

It remains to consider the function χl(k)/χl(ky). Observe that

hy,l(k) := 1− χl(k)
χl(ky) = 1− 1 + |ky|l

yl + |ky|l = 1− y−l
1 + |k|l = (1− y−l)(1− χl(k)).

By Corollary B.6, 1 − χl ∈ W0(R). Therefore, applying Lemma B.2, we obtain the
following estimate

|I2(t;x, y)| ≤ Ct−1/2 max(1, y−l), t > 0, (4.8)

whenever l ∈ (0, 1/2).
Consider now the remaining case l ∈ (−1/2, 0]. Write

A2(k2;x, y) = J(kx)Y (ky) Immα(k2),

where
J(r) =

√
r Jl+ 1

2
(r), Y (r) =

√
r J−l− 1

2
(r).

Noting that Y (r) ∼ r−l as r → 0 and using Lemma B.3, we can continue J and Y to
the region r < 0 such that both J and Y are Fourier transforms of finite measures.

It remains to consider Immα(k2) given by (2.13). However, by Corollary B.6, this
function is in the Wiener algebra W0(R) and hence applying Lemma B.2, we end up
with the estimate

|I2(t;x, y)| ≤ Ct−1/2, t > 0, (4.9)
whenever l ∈ (−1/2, 0].

4.3. THE INTEGRAL I3

Again let us consider two cases. Assume first that l ∈ (−1/2, 0] and then write

A3(k2;x, y) = Y (kx)Y (ky) Immα(k2)k2l+1,

where
Y (r) =

√
r J−l− 1

2
(r), r > 0.

Notice that

|k|2l+1 Immα(k2) = C2
l k

4l+2

(cos(α)− C2
l sin(α) tan(πl)k2l+1)2 + C4

l sin2(α)k4l+2 ,

which is the sum of a constant and a function of the form (B.5), and hence it belongs
to the Wiener algebra W(R) by Corollary B.6. Arguing as in the previous subsection
and applying Lemma B.2, we arrive at the following estimate

|I3(t;x, y)| ≤ Ct−1/2, t > 0, (4.10)

whenever l ∈ (−1/2, 0].
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If l ∈ (0, 1/2), write

A3(k2;x, y) = Y (kx)Y (ky) χl(k)
χl(kx)

χl(k)
χl(ky)

Immα(k2)
χ2
l (k) ,

where
Y (r) = χl(r)

√
r J−l− 1

2
(r), χl(r) = |r|l

1 + |r|l .

Notice that

M(k) := Immα(k2)|k|2l+1

χ2
l (k)

= C2
l |k|2l+2(1 + kl)2

(cos(α)− C2
l sin(α) tan(πl)|k|2l+1)2 + C4

l sin2(α)|k|4l+2

Clearly, by Corollary B.6, M ∈ W(R). Therefore, similar to the previous subsection,
we end up with the estimate

|I3(t;x, y)| ≤ Ct−1/2 max(1, x−l) max(1, y−l), t > 0, (4.11)

whenever l ∈ (0, 1/2).

4.4. PROOF OF THEOREM 1.2

We begin with the representation of the integral kernel of the evolution group.
Lemma 4.1. Let |l| < 1/2 and α ∈ [0, π). Then the evolution group e−itHαPc(Hα) is
an integral operator and its kernel is given by

[e−itHαPc(Hα)](x, y) = 2
π

∫

R+

e−itk2
φα(k2, x)φα(k2, y) Immα(k2)k dk, (4.12)

where the integral is to be understood as an improper integral.
Proof. By (2.3) and (2.8),

φα(k2, x) = cos(α)φ(k2, x) + sin(α)θ(k2, x)

=
√
πx

2

(
C−1
l cos(α)k−l−1/2Jl+ 1

2
(kx) + Clk

l+1/2 sin(α)
cos(πl)J−l−

1
2
(kx)

)
,

and hence

φα(k2, x)φα(k2, y) = π

2
√
xy

(
cos2(α)
C2
l

k−2l−1Jl+ 1
2
(kx)Jl+ 1

2
(ky)

+ sin(2α)
2 cos(πl) (Jl+ 1

2
(kx)J−l− 1

2
(ky) + J−l− 1

2
(kx)Jl+ 1

2
(ky))

+C2
l k

2l+1 sin2(α)
cos2(πl)J−l−

1
2
(kx)J−l− 1

2
(ky)

)
.

(4.13)
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By our considerations in the previous subsections, we have

φα(k2, x)φα(k2, y) Immα(k2)k ∈ W(R)

with norm uniformly bounded for x, y restricted to any compact subset of (0,∞).
Moreover, we have e−i(t−iε)HαPc(Hα)→ e−itHαPc(Hα) as ε ↓ 0 in the strong operator
topology. By Lemma C.1, e−i(t−iε)HαPc(Hα) is an integral operator for all ε > 0 and,
moreover, the kernel converges uniformly on compact sets by Lemma C.2. Hence
e−itHαPc(Hα) is an integral operator whose kernel is given by the limits of the kernels
of the approximating operators, that is, by (4.12).

Proof of Theorem 1.2. Combining (4.7), (4.8), (4.9), (4.10) and (4.11), we arrive at
the following decay estimate for the kernel of the evolution group

∣∣∣[e−itHαPc(Hα)](x, y)
∣∣∣ ≤ Ct−1/2 ×

{
1, l ∈ (−1/2, 0],
max(1, x−l) max(1, y−l), l ∈ (0, 1/2).

(4.14)

This completes the proof of Theorem 1.2.

A. BESSEL FUNCTIONS

Here we collect basic formulas and information on Bessel functions (see, e.g., [17, 21]).
We start with the definition:

Jν(z) =
(z

2

)ν ∞∑

n=0

(−z2/4)n
n!Γ(ν + n+ 1) . (A.1)

The asymptotic behavior as |z| → ∞ is given by

Jν(z) =
√

2
πz

(
cos(z − νπ/2− π/4) + e| Im z|O(|z|−1)

)
, | arg z| < π. (A.2)

Noting that

J ′ν(z) = −Jν+1(z) + ν

z
Jν(z) = Jν−1(z)− ν

z
Jν(z), (A.3)

one can show that the derivative of the reminder satisfies

(√
πz

2 Jν(z)− cos(z − 1
2νπ −

1
4π)

)′
= e| Im z|O(|z|−1), |z| → ∞. (A.4)
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B. THE VAN DER CORPUT LEMMA AND THE WIENER ALGEBRA

We will need the classical van der Corput lemma (see, e.g., [19, page 334]):

Lemma B.1. Consider the oscillatory integral

I(t) =
b∫

a

eitk2+ickA(k)dk.

If A ∈ AC(a, b), then

|I(t)| ≤ C2 |t|−1/2 (‖A‖∞ + ‖A′‖1), |t| ≥ 1,

where C2 ≤ 28/3 is a universal constant.

Note that we can apply the above result with (a, b) = (−∞,∞) by considering the
limit (−a, a)→ (−∞,∞).

Our proof will be based on the following variant of the van der Corput lemma (see,
e.g., [13, Lemma A.2]).

Lemma B.2. Let (a, b) ⊆ R and consider the oscillatory integral

I(t) =
b∫

a

eitk2
A(k)dk.

If A ∈ W(R), i.e., A is the Fourier transform of a signed measure

A(k) =
∫

R

eikpdα(p),

then the above integral exists as an improper integral and satisfies

|I(t)| ≤ C2 |t|−1/2 ‖A‖W , |t| > 0.

where ‖A‖W := ‖α‖ = |α| (R) denotes the total variation of α and C2 is the constant
from the van der Corput lemma.

In this respect we note that if A1 and A2 are two such functions, then (cf. p. 208
in [2])

(A1A2)(k) = 1
(2π)2

∫

R

eikpd(α1 ∗ α2)(p)

is associated with the convolution

α1 ∗ α2(Ω) =
∫∫

1Ω(x+ y)dα1(x)dα2(y),
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where 1Ω is the indicator function of a set Ω. Note that

‖α1 ∗ α2‖ ≤ ‖α1‖‖α2‖.

Let W0(R) be the Wiener algebra of functions C(R) which are Fourier transforms
of L1 functions,

W0(R) =
{
f ∈ C(R) : f(k) =

∫

R

eikxg(x)dx, g ∈ L1(R)
}
.

Clearly, W0(R) ⊂ W(R). Moreover, by the Riemann–Lebesgue lemma, f ∈ C0(R),
that is, f(k)→ 0 as k →∞ if f ∈ W0(R). A comprehensive survey of necessary and
sufficient conditions for f ∈ C(R) to be in the Wiener algebras W0(R) and W(R) can
be found in [15,16]. We need the following statements.

Lemma B.3. If f ∈ L2(R) is locally absolutely continuous and f ′ ∈ Lp(R) with
p ∈ (1, 2], then f is in the Wiener algebra W0(R) and

‖f‖W ≤ Cp
(
‖f‖L2(R) + ‖f ′‖Lp(R)

)
, (B.1)

where Cp > 0 is a positive constant, which depends only on p.

Proof. Since the Fourier transform is unitary on L2(R), it suffices to show that
f̂ ∈ L1(R). First of all, the Cauchy–Schwarz inequality implies f̂ ∈ L1

loc(R) and, in
particular,

1∫

−1

|f̂(λ)|dλ ≤
√

2




1∫

−1

|f̂(λ)|1/2dλ




2

≤
√

2‖f‖L2(R). (B.2)

On the other hand, f ′ ∈ Lp(R) and hence the Hausdorff–Young inequality implies
λf̂(λ) ∈ Lq(R) with 1/p + 1/q = 1. Applying the Hölder inequality and then the
Hausdorff–Young inequality once again, we get

∫

|λ|>1

|f̂(λ)|dλ ≤ 2
∫

|λ|>1

1
1 + |λ| |λf̂(λ)|dλ

≤ 2



∫

R

1
(1 + |λ|)p dλ




1/p

∫

R

|λf̂(λ)|qdλ




1/q

≤ C ′p‖f ′‖Lp(R),

which completes the proof.

Remark B.4. The case p = 2 is due to Beurling [15, Theorem 5.3]. A similar result
was obtained by S. G. Samko. Namely, if f ∈ L1(R) ∩ ACloc(R) is such that f ,
f ′ ∈ Lp(R) with some p ∈ (1, 2], then f ∈ W0(R) (see Theorem 6.8 in [15]).

The next result is also due to Beurling (see, e.g., Theorem 5.4 in [15]).
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Theorem B.5 (Beurling). Let f ∈ C0(R) be even and f , f ′ ∈ ACloc(R). If

C :=
∫

R+

k|f ′′(k)|dk <∞, (B.3)

then f ∈ W0(R) and ‖f‖W ≤ C.

Consider the following functions, which appear in Section 4:

χl(k) = |k|l
1 + |k|l , l > 0, (B.4)

fl,p(k) = |k|p
a+ b|k|l + |k|2l , 2l > p ≥ 0, (B.5)

where a, b ∈ R are such that a + b|k|p + |k|2p > 0 for all k ∈ R. As an immediate
corollary of Beurling’s result we get

Corollary B.6. χl ∈ W(R), 1− χl ∈ W0(R), and fl,p ∈ W0(R).

C. INTEGRAL KERNELS

There are various criteria for operators in Lp spaces to be integral operators (see,
e.g., [3]). Below we present a simple sufficient condition on a function K for K(H) to
be an integral operator, where H is a one-dimensional Schrödinger operator. More
precisely, let H be a singular Schrödinger operator on L2(a, b) as in [11] or [12] with
corresponding entire system of solutions θ(z, x) and φ(z, x). Recall

(H − z)−1f(x) =
b∫

a

G(z, x, y)f(y)dy, (C.1)

where

G(z, x, y) =
{
φ(z, x)ψ(z, y), y ≥ x,
φ(z, y)ψ(z, x), y ≤ x, (C.2)

is the Green function of H and ψ(z, x) is the Weyl solution normalized by W (θ, ψ) = 1
(cf. [20, Lemma 9.7]). We start with a simple lemma ensuring that a function K(H)
is an integral operator. To this end recall that K(H) is defined as U−1KU with
K the multiplication operator in L2(R, dρ), ρ the associates spectral measure, and
U : L2(a, b)→ L2(R, dρ) the spectral transformation

(Uf)(λ) =
b∫

a

φ(λ, x)f(x)dx. (C.3)
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Lemma C.1. Suppose H is bounded from below and |K(λ)| ≤ C(1 + |λ|)−1 or
otherwise |K(λ)| ≤ C(1 + |λ|)−2. Then K(H) is an integral operator

(K(H)f)(x) =
b∫

a

K(x, y)f(y)dy, (C.4)

with kernel
K(x, y) =

∫

R

K(λ)φ(λ, x)φ(λ, y)dρ(λ). (C.5)

In particular, (1+ |.|)−1/2φ(., x) ∈ L2(R, dρ) and K(x, .) ∈ L2(a, b) for every x ∈ (a, b).
Proof. Note that (cf. [11, Lemma 3.6])

(UG(z;x, .))(λ) = φ(λ, x)
z − λ .

If H is bounded from below then G(z;x, .) is in the form domain of H for fixed x
and every z ∈ C \ σ(H) (cf. [8, (A.6)]) and we obtain from [11, Lemma 3.6] that
(1+|λ|)−1/2φ(λ, x) ∈ L2(R, dρ). In the general case we at least have G(z;x, .) ∈ L2(a, b)
and thus (1+ |λ|)−1φ(λ, x) ∈ L2(R, dρ). Hence we can use Fubini’s theorem to evaluate

K(H)f(x) = U−1KUf(x) =
∫

R

φ(x, λ)K(λ)




b∫

a

φ(λ, y)f(y)dy


 dρ(λ)

=
b∫

a

K(x, y)f(y)dy.

As a consequence we obtain that (4.12) holds at least for Im(t) < 0. To take the
limit Im(t)→ 0 we need the following result which follows from [5, Lemma 3.1].
Lemma C.2. Consider the improper integral

F (ε) =
∞∫

−∞

e−i(t+iε)k2
f(k)dk, ε ≤ 0,

where
f(k) =

∫

R

eikpdα(p), |α|(R) <∞.

Then
F (ε) = 1√

4πi(t+ iε)

∫

R

e−
p2

4(t+iε) dα(p).
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