PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An evaluation method of rock pore volume compressibility determination using a computed tomography scanned based finite element model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper has proposed a new perspective of studying internal structure-based tests, the results of which will improve the present experimental methods and enrich our understanding of rock structure-based modeling without any core preparations, with low cost in a short time. Pore volume compressibility (PVC) is an important feature of rock and is related to mechanical and structural behavior of porous rock sample. An accurate evaluation of pore volume compressibility depends on experimental test which is time-consuming and costly. This paper outlines new method for evaluation of PVC of rock cores using a computed tomography (CT) scan-based finite element method (FEM). The verification studies were performed on a series of porous rock cores which were extracted from deep oil reservoirs in Iran. In order to construct a finite element model, a relationship between spatial elastic properties of samples and CT-scanned data images was derived. The samples were scanned by a conic beam computed tomography (CBCT) machine, and the scanned data were converted into a model to simulate PVC tests. The pore volumetric strains were obtained from a linear elastic analysis for each stress and pore pressure step. To validate the finite element analysis (FEA) results, a series of experimental PVC tests were conducted on the pre-scanned samples and PVC curves were extracted. As a result, the predictions calculated from the CT scan-based numerical models have shown a good correlation with the results obtained from laboratory experiments. The results revealed that it is possible to simulate PVC tests using this numerical proposed evaluation method in such a way that the cost and time of the tests were lowered.
Czasopismo
Rocznik
Strony
147--159
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
  • Mining Engineering Department, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • Department of Mining Engineering, Tarbiat Modares University, Tehran, Iran
  • Division of Petroleum Engineering, Faculty of Upstream Petroleum Industry, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
Bibliografia
  • 1. Aloki Bakhtiari HAV, Moosavi A, Kazemzadeh E, Goshtasbi K, Esfahani MR, Vali J (2011) The effect of rock types on pore volume compressibility of limestone and dolomite samples. Geopersia 1(1):37–82. https://doi.org/10.22059/jgeope.2011.22163
  • 2. Al-Raoush RI, Willson CS (2005) Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems. J Hydrol 300(1):44–64. https://doi.org/10.1016/j.jhydrol.2004.05.005
  • 3. Basu D, Kumar SS (1995) Importing mesh entities through IGES/PDES. Adv Eng Softw 23(3):151–161. https://doi.org/10.1016/0965-9978(95)00075-5
  • 4. Bauer D, Youssef S, Han M, Bekri S, Rosenberg E, Fleury M, Vizika O (2011) From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: Influence of percolation on the electrical transport properties. Phys Rev E 84(1):011133. https://doi.org/10.1103/PhysRevE.84.011133
  • 5. Christe P, Turberg P, Labiouse V, Meuli R, Parriaux A (2011) An X-ray computed tomography-based index to characterize the quality of cataclastic carbonate rock samples. Eng Geol 117(3–4):180–188. https://doi.org/10.1016/j.enggeo.2010.10.016
  • 6. Cnudde V, Masschaele B, Dierick M, Vlassenbroeck J, Hoorebeke LV, Jacobs P (2006) Recent progress in X-ray CT as a geosciences tool. Appl Geochem 21(5):826–832. https://doi.org/10.1016/j.apgeochem.2006.02.010
  • 7. Das V, Saxena N, Hofmann R (2020) Compressibility predictions using digital thin-section images of rocks. Comput Geosci 139:104482. https://doi.org/10.1016/j.cageo.2020.104482
  • 8. Deng H, Stauffer PH, Dai Z, Jiao Z, Surdam RC (2012) Simulation of industrial-scale CO2 storage: Multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage. Int J Greenhouse Gas Control 10:397–418. https://doi.org/10.1016/j.ijggc.2012.07.003
  • 9. Feng X-T, Chen S, Zhou H (2004) Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion. Int J Rock Mech Min Sci 41(2):181–192. https://doi.org/10.1016/S1365-1609(03)00059-5
  • 10. Fotina I, Hopfgartner J, Stock M, Steininger T, Lütgendorf-Caucig C, Georg D (2012) Feasibility of CBCT-based dose calculation: Comparative analysis of HU adjustment techniques. Radiother Oncol 104(2):249–256. https://doi.org/10.1016/j.radonc.2012.06.007
  • 11. Gonçalves OD, Boldt S, Nadaes M, Devito KL (2018) Evaluating the scattered radiation intensity in CBCT. Radiat Phys Chem 144:159–164. https://doi.org/10.1016/j.radphyschem.2017.07.019
  • 12. Hall HN (1953) Compressibility of Reservoir Rocks. Petroleum Transactions, AIME 198:309–311. https://doi.org/10.2118/953309-G
  • 13. Hambli R (2013) Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone 56(2):363–374. https://doi.org/10.1016/j.bone.2013.06.028
  • 14. Harari Z, Shu-Teh W, Salih S (1995) Pore-compressibility study of Arabian carbonate reservoir rocks. SPE Form Eval 10(04):207–214. https://doi.org/10.2118/27625-PA
  • 15. Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23(2):135–146. https://doi.org/10.1016/j.clinbiomech.2007.08.024
  • 16. Huang L, Baud P, Cordonnier B, Renard F, Liu L, Wong T-F (2019) Synchrotron X-ray imaging in 4D: multiscale failure and compaction localization in triaxially compressed porous limestone. Earth Planet Sci Lett 528:115831. https://doi.org/10.1016/j.epsl.2019.115831
  • 17. IGES/PDES. (2001). The Initial Graphics Exchange Specification (IGES) Version 6.0. In
  • 18. Jalalh AA (2006) Compressibility of porous rocks: part I. measurements of hungarian reservoir rock samples. Acta Geophysica 54(3):319–332
  • 19. Jalalh AA (2006b) Compressibility of porous rocks: part II. New Relationsh Acta Geophysica 54(4):399–412. https://doi.org/10.2478/s11600-006-0029-4
  • 20. Josh M, Esteban L, Delle Piane C, Sarout J, Dewhurst DN, Clennell MB (2012) Laboratory characterisation of shale properties. J Petrol Sci Eng 88:107–124. https://doi.org/10.1016/j.petrol.2012.01.023
  • 21. Karpyn ZT, Alajmi A, Radaelli F, Halleck PM, Grader AS (2009) X-ray CT and hydraulic evidence for a relationship between fracture conductivity and adjacent matrix porosity. Eng Geol 103(3):139–145. https://doi.org/10.1016/j.enggeo.2008.06.017
  • 22. Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2009) Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: an in vitro study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 107(3):420–425. https://doi.org/10.1016/j.tripleo.2008.05.049
  • 23. Khajeh MM, Chalaturnyk RJ, Boisvert J (2011). Impact of heterogeneous geomechanical properties on coupled geomechanical-flow simulation of sagd. Paper presented at the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE
  • 24. Larmagnat S, Des Roches M, Daigle L-F, Francus P, Lavoie D, Raymond J, Aubiès-Trouilh A (2019) Continuous porosity characterization: metric-scale intervals in heterogeneous sedimentary rocks using medical CT-scanner. Mar Pet Geol 109:361–380. https://doi.org/10.1016/j.marpetgeo.2019.04.039
  • 25. Liu, H.-H., Rutqvist, J., & Berryman, J. G. (2009). On the relationship between stress and elastic strain for porous and fractured rock. Int J Rock Mech Mining Sci, 46(2):289–296. Retrieved from http://www.sciencedirect.com/science/article/B6V4W-4SK0C66-4/2/5b41418b693c3aa7854b1b11de4f374a
  • 26. Lopes A, Brodlie K (2003) Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing. IEEE Trans Visual Comput Gr 9(1):16–29
  • 27. Ma T, Yang C, Chen P, Wang X, Guo Y (2016) On the damage constitutive model for hydrated shale using CT scanning technology. J Nat Gas Sci Eng 28:204–214. https://doi.org/10.1016/j.jngse.2015.11.025
  • 28. Mah P, Reeves TE, McDavid WD (2010) Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofacial Radiol 39(6):323–335. https://doi.org/10.1259/dmfr/19603304
  • 29. Needham AW, Abel RL, Tomkinson T, Grady MM (2013) Martian subsurface fluid pathways and 3D mineralogy of the Nakhla meteorite. Geochimica et Cosmochimica Acta 116:96–110
  • 30. Nixon MS, Aguado AS (2013) Feature extraction & image processing for computer vision, Third Edition. Academic Press
  • 31. Razi T, Niknami M, Alavi Ghazani F (2014) Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. Journal of Dental Research, Dental Clinics, Dental Prospects 8(2):107–110. https://doi.org/10.5681/joddd.2014.019
  • 32. Renard F, Bernard D, Desrues J, Ougier-Simonin A (2009) 3D imaging of fracture propagation using synchrotron X-ray microtomography. Earth Planet Sci Lett 286(1):285–291. https://doi.org/10.1016/j.epsl.2009.06.040
  • 33. Rutqvist J, Tsang C-F (2003) Analysis of thermal–hydrologic–mechanical behavior near an emplacement drift at Yucca Mountain. J Contam Hydrol 62:637–652. https://doi.org/10.1016/S0169-7722(02)00184-5
  • 34. Sato A, Obara Y (2017) Analysis of pore structure and water permeation property of a shale rock by means of X-ray CT. Proc Eng 191:666–673. https://doi.org/10.1016/j.proeng.2017.05.230
  • 35. Saxena N, Hows A, Hofmann R, Alpak FO, Dietderich J, Appel M, De Jong H (2019) Rock properties from micro-CT images: digital rock transforms for resolution, pore volume, and field of view. Adv Water Resour 134:103419. https://doi.org/10.1016/j.advwatres.2019.103419
  • 36. Scarfe WC, Farman AG (2008) What is cone-beam CT and how does it work? Dent Clin North Am 52(4):707–730. https://doi.org/10.1016/j.cden.2008.05.005
  • 37. Schoonmaker SJ (2002) The CAD guidebook: a basic manual for understanding and improving computer-aided design, 1st edn. CRC Press
  • 38. Shan P, Lai X (2019) Influence of CT scanning parameters on rock and soil images. J vis Commun Image Represent 58:642–650. https://doi.org/10.1016/j.jvcir.2018.12.014
  • 39. Siddiqui S, Funk JJ, Khamees AA, Al-Harbi AM (2008) Recent advances in the measurement of pore volume compressibility of reservoir rocks. International Symposium of the Society of Core Analysts, Abu Dhabi, 29 October–2 November
  • 40. Suekane T, Thanh NH, Matsumoto T, Matsuda M, Kiyota M, Ousaka A (2009) Direct measurement of trapped gas bubbles by capillarity on the pore scale. Energy Proc 1(1):3189–3196. https://doi.org/10.1016/j.egypro.2009.02.102
  • 41. Sun W, Wu A, Hou K, Yang Y, Liu L, Wen Y (2016) Real-time observation of meso-fracture process in backfill body during mine subsidence using X-ray CT under uniaxial compressive conditions. Constr Build Mater 113:153–162. https://doi.org/10.1016/j.conbuildmat.2016.03.050
  • 42. Sun W, Hou K, Yang Z, Wen Y (2017) X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression. Constr Build Mater 138:69–78. https://doi.org/10.1016/j.conbuildmat.2017.01.088
  • 43. Taron J, Elsworth D (2009). Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs. Int J Rock Mecha Min Sci, 46(5):855–864. Retrieved from http://www.sciencedirect.com/science/article/B6V4W-4VPV8XV-1/2/65c7d1ecbd2ba5944cd2ba642208ac1c
  • 44. Teatini P, Gambolati G, Ferronato M, Settari A, Walters D (2011) Land uplift due to subsurface fluid injection. J Geodyn 51(1):1–16. https://doi.org/10.1016/j.jog.2010.06.001
  • 45. Wang J (2010) High-level radioactive waste disposal in China: update 2010. J Rock Mech Geotech Eng 2(1):1–11. https://doi.org/10.3724/SP.J.1235.2010.00001
  • 46. Wang X-S, Jiang X-W, Wan L, Song G, Xia Q (2009) Evaluation of depth-dependent porosity and bulk modulus of a shear using permeability–depth trends. Int J Rock Mech Min Sci 46(7):1175–1181
  • 47. Wang Y, Li CH, Hu YZ (2018) Use of X-ray computed tomography to investigate the effect of rock blocks on meso-structural changes in soil-rock mixture under triaxial deformation. Constr Build Mater 164:386–399. https://doi.org/10.1016/j.conbuildmat.2017.12.173
  • 48. Wang G, Shen J, Liu S, Jiang C, Qin X (2019) Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int J Rock Mech Min Sci 123:104082. https://doi.org/10.1016/j.ijrmms.2019.104082
  • 49. Wang Y, Feng WK, Wang HJ, Li CH, Hou ZQ (2020) Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning. Cold Reg Sci Technol 177:103115. https://doi.org/10.1016/j.coldregions.2020.103115
  • 50. Yun TS, Jeong YJ, Kim KY, Min K-B (2013) Evaluation of rock anisotropy using 3D X-ray computed tomography. Eng Geol 163:11–19. https://doi.org/10.1016/j.enggeo.2013.05.017
  • 51. Zabler S, Rack A, Manke I, Thermann K, Tiedemann J, Harthill N, Riesemeier H (2008) High-resolution tomography of cracks, voids and micro-structure in greywacke and limestone. J Struct Geol 30(7):876–887. https://doi.org/10.1016/j.jsg.2008.03.002
  • 52. Zhang, JJ, Bentley LR (2005) Factors determining Poisson’s ratio. CREWES Research Report 17
  • 53. Zhang Y, Zhang Z, Arif M, Lebedev M, Busch A, Sarmadivaleh M, Iglauer S (2020) Carbonate rock mechanical response to CO2 flooding evaluated by a combined X-ray computed tomography – DEM method. Journal of Natural Gas Science and Engineering 84:103675. https://doi.org/10.1016/j.jngse.2020.103675
  • 54. Zheng Z (1993) Compressibility of porous rocks under different stress conditions. Int J Rock Mech Min Sci Geomech Abstr 30(7):1181–1184. https://doi.org/10.1016/0148-9062(93)90091-Q
  • 55. Zhu Q, Zhou Q, Li X (2016) Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media. J Rock Mech Geotech Eng 8(1):87–92. https://doi.org/10.1016/j.jrmge.2015.08.004
  • 56. Zimmerman, R. W. (1991). Compressibility of sandstones. Amsterdam ; New York : New York, NY, USA: Elsevier ; Distributors for the United States and Canada, Elsevier Science Pub. Co
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73f1668c-1e0a-488c-8f67-8c5c35115287
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.