PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite-time SDRE control of F16 aircraft dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a finite-time horizon suboptimal control strategy based on state-dependent Riccati equation (SDRE) to control of F16 multirole aircraft. Flight stabilizer control of super maneuverable aircraft is modelled and simulated. For aircraft modelling purpose a full 6 DOF model is considered and described by nonlinear state-space approach. Also a stable state-dependent parametrization (SDP) necessary for solution of the SDRE control problem is proposed. Solution of the SDRE control problem with adequate defined weighting matrices in performance index shows possibility of fast and optimal aircraft control in finite-time. The method in this form can be used for stabilization of aircraft flight and aerodynamics.
Rocznik
Strony
557--576
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wzory
Twórcy
  • Air Force Institute of Technology, Księcia Bolesława 6, 01-494 Warsaw, Poland
  • Air Force Institute of Technology, Księcia Bolesława 6, 01-494 Warsaw, Poland
  • Air Force Institute of Technology, Księcia Bolesława 6, 01-494 Warsaw, Poland
  • Poznan University of Technology, Institute of Automatic Control and Robotics, Piotrowo 3a, 60-965 Poznań, Poland
Bibliografia
  • [1] W. Ahmed, Z. Li, H. Maqsood, and B. Anwar: System modeling and controller design for lateral and longitudinal motion of F-16. Automation, Control and Intelligent Systems, 7(1), (2019), 39-45. DOI: 10.11648/j.acis.20190701.15.
  • [2] H.T. Banks, B.M. Lewis, and H.T. Tran: Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach. Computational Optimization and Applications, 37(2), (2007), 177-218. DOI: 10.1007/s10589-007-9015-2.
  • [3] J.C.A. Barata and M.S. Hussein: The Moore-Penrose Pseudoinverse. A Tutorial Review of the Theory. John Hopkins University Press, 2013.
  • [4] A. Bracci, M. Innocenti, and L. Pollini: Estimation of the region of attraction for state-dependent Riccati equation controllers. Journal of Guidance, Control and Dynamics, 29(6), (2006), 1427-1430. DOI: 10.2514/1.22122.
  • [5] T. Cimen and S.P. Banks: Global optimal feedback control for general non-linear systems with non-quadratic performance criteria. System and Control Letters, 53(5), (2004), 327-346. DOI: 10.1016/j.sysconle.2004.05.008.
  • [6] T. Cimen and S.P. Banks: Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica, 40(11), (2004), 1845-1863. DOI: 10.1016/j.automatica.2004.05.015.
  • [7] T. Çimen: Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annual Reviews in Control, 34(1), (2010), 32-51. DOI: 10.1016/j.arcontrol.2010.03.001.
  • [8] J.R. Cloutier, C.N. D’Souza, and C.P. Mracek: Nonlinear regulation and nonlinear H1 control via the state-dependent Riccati equation technique: Part 1, Theory; Part 2, Examples. In: Proceedings of the First International Conference on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL, (1996), 117-141.
  • [9] R. Czyba and L. Stajer: Dynamic contraction method approach to digital longitudinal aircraft flight controller design. Archives of Control Sciences, 29(1), (2019), 97-109. DOI: 10.24425/acs.2019.127525.
  • [10] E.B. Erdem and A.G. Alleyne: Globally stabilizing second-order nonlinear systems by SDRE control. In: Proceedings of the American Control Conference, San Diego, CA. USA, (1999). DOI: 10.1109/ACC.1999.786502.
  • [11] E.B. Erdem and A.G. Alleyne: Design of a class of nonlinear controllers via state dependent Riccati equations. IEEE Transactions on Control Systems Technology, 12(1), (2004), 133-137. DOI: 10.1109/TCST.2003.819588.
  • [12] J. Geng, Y. Sheng, and X. Liu: Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system. Chinese Journal of Aeronautics, 27(4), (2014), 964-976. DOI: 10.1016/j.cja.2014.03.013.
  • [13] K.D. Hammett, C.D. Hall, and D.B. Ridgely: Controllability issues in nonlinear state-dependent Riccati equation control. Journal of Guidance, Control and Dynamics, 21(54), (1998), 767-773. DOI: 10.2514/2.4304.
  • [14] A. Heydari and S.N. Balakrishnan: Closed-form solution to finite-horizon suboptimal control of nonlinear systems. International Journal of Robust Nonlinear Control, 25(15), (2015), 2687-2704. DOI: 10.1002/rnc.3222.
  • [15] M.H. Korayem and S.R. Nekoo: Finite-time state-dependent Riccati equation for time-varying nonaffine systems: Rigid and flexible joint manipulator control. ISA Transactions, 54, (2015), 125-144. DOI: 10.1016/j.isatra.2014.06.006.
  • [16] Q.M. Lam, M. Xin, and J.R. Cloutier: SDRE control stability criteria and convergence issues: where are we today addressing practitioners’ concerns?, In: AIAA papers, (2012), 2012-2475. DOI: 10.2514/6.2012-2475.
  • [17] Y.W. Liang and L.G. Lin: On factorization of the nonlinear drift term for SDRE approach. In: Proceedings of the 18th World congress IFAC., 44(1), (2011), 9607-9612. DOI: 10.3182/20110828-6-IT-1002.00808.
  • [18] K. Lu and Y. Xia: Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory and Applications, 7(11), (2013), 1529-1539. DOI: 10.1049/iet-cta.2012.1031.
  • [19] D.G. Mitchell, R.H. Hoh, B.L. Aponso, and D.H. Klyde: The measurement and prediction of pilot-in-the-loop oscillations. In: AIAA Papers, (1994), 94-3670. DOI: 10.2514/6.1994-3670.
  • [20] C.P. Mracek and J.R. Cloutier: Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. International Journal of Robust Nonlinear Control, 8(4-5), (1998), 401-433. DOI: 10.1002/(SICI)1099-1239(19980415/30)8:4/5.
  • [21] J.D. Pearson: Approximation methods in optimal control. Journal of Electronics and Control, 13, (1962), 453-469. DOI: 10.1080/00207216208937454.
  • [22] E. Promtun and S. Seshagiri: Sliding mode control of pitch-rate of an F-16 aircraft. IFAC Proceedings Volumes (IFAC Papers-OnLine), 41(2), (2008), 1099-1104. DOI: 10.3182/20080706-5-KR-1001.00190.
  • [23] W.C. Reigelsperger and S.S. Banda: Nonlinear simulation of a modified F-16 with full-envelope control laws. Control Engineering Practice, 6(3), (1998) 309-320. DOI: 10.1016/S0967-0661(98)00024-0.
  • [24] J.S. Shamma and J.R. Cloutier: Existence of SDRE stabilizing feedback. IEEE Transactions on Automatic Control, 48(3), (2003), 513-517. DOI: 10.1109/TAC.2002.808473.
  • [25] M. Siwczyński and K. Hawron: Optimum tasks and solutions for energy transmission from the source to the receiver. Bulletin of the Polish Academy of Sciences. Technical Sciences, 66(5), (2018), 655-663. DOI: 10.24425/124281.
  • [26] M. Sznaier, J. Cloutier, R. Hull, D. Jacques, and C. Mracek: Receding horizon control Lyapunov function approach to suboptimal regulation of nonlinear systems. Journal of Guidance, Control and Dynamics, 23(3), (2000), 399-405. DOI: 10.2514/2.4571.
  • [27] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu: Output tracking control of an aircraft subject to additive state dependent disturbance: an optimal control approach. Archives of Control Sciences, 31(2), (2021), 267-286. DOI: 10.24425/acs.2021.137418.
  • [28] K.K. Varanasi and S. Nayfeh: The dynamics of lead-screw drivers: low order modeling and experiments. Transactions of ASME, 126, (2004), 388-396. DOI: 10.1115/1.1771690.
  • [29] N. Wahid, M.F.A. Rahmat, and K. Jusoff: Comparative assesment using LQR and fuzzy logic controller for a pitch control system. European Journal of Scientific Research, 42(2), (2010), 184-194.
  • [30] N. Wang, J. Yu and W. Lin: Positioning control of linear actuator with nonlinear friction and input saturation using output feedback control. Complexity, 21(S2), (2016), 191-200. DOI: 10.1002/cplx.21797.
  • [31] F. Wang, Q. Zong, and B. Tian: Adaptive backstepping finite time attitude control of reentry RLV with input constraint. Mathematical Problems in Engineering, 5, (2014), 1-19. DOI: 10.1155/2014/801747.
  • [32] A. Wernli and G. Cook: Suboptimal control for the nonlinear quadratic regulator problem. Automatica, 11(1), (1975), 75-84. DOI: 10.1016/0005-1098(75)90010-2.
  • [33] Y.W. Liang and L.G. Lin: Analysis of SDC matrices for successfully implementing the SDRE scheme. Automatica, 49(10), (2013), 3120-3124. DOI: 10.1016/j.automatica.2013.07.026.
  • [34] W. Durham: Aircraft Flight Dynamics and Control. First Edition, John Wiley & Sons Ltd., 2013.
  • [35] M.V. Cook: Flight Dynamics Principles. Second Edition, Elsevier Aero-space Engineering Series, 2007.
  • [36] Flight Control Design - Best Practices, RTO TECHNICAL REPORT 29, RTO/NATO 2000 [Online]. Available: https://www.sto.nato.int>RTO-R-029 [Accessed: 6. July 2021]
  • [37] The F-16 combines interoperability and advanced technologies into a proven design [Online]. Available: https://www.lockheedmartin.com/en-us/products/f-16.html [Accessed: 6. July 2021].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73f08d7b-2f10-47c0-9066-cfe67f236105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.