PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A decentralized group signature scheme for privacy protection in a blockchain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Group signature schemes play a vital role in protecting identity privacy of a member of a group who signs a message using the group signature. However, in the existing group signature schemes the centralized group manager has control over all the participants, and these managers can be malicious. They may take a biased decision when there is a dispute among the group members or while revealing the identity of a group member. To overcome the trust issues related to centralized group managers and to improve user privacy, a decentralized group signature scheme (DGSS) is proposed by decentralizing the role of the group manager. The proposed scheme will be more suitable for decentralized environments like a blockchain. Security analysis along with the proof of correctness is also provided for the proposed scheme. A framework for a blockchain-based e-auction protocol using the DGSS is also proposed in this paper.
Rocznik
Strony
353--364
Opis fizyczny
Bibliogr. 35 poz., tab.
Twórcy
autor
  • School of Computer and Information Sciences, University of Hyderabad, Hyderabad, Telangana, India
  • School of Computer and Information Sciences, University of Hyderabad, Hyderabad, Telangana, India
  • School of Computer and Information Sciences, University of Hyderabad, Hyderabad, Telangana, India
Bibliografia
  • [1] Agarwal, A. and Saraswat, R. (2013). A survey of group signature technique, its applications and attacks, International Journal of Engineering and Innovative Technology 2(10): 28–35.
  • [2] Al Jawaheri, H., Al Sabah, M., Boshmaf, Y. and Erbad, A. (2020). Deanonymizing tor hidden service users through bitcoin transactions analysis, Computers & Security 89: 101684.
  • [3] Androulaki, E., Karame, G. O., Roeschlin, M., Scherer, T. and Capkun, S. (2013). Evaluating user privacy in bitcoin, International Conference on Financial Cryptography and Data Security, Okinawa, Japan, pp. 34–51.
  • [4] Ateniese, G., Song, D. and Tsudik, G. (2002). Quasi-efficient revocation of group signatures, International Conference on Financial Cryptography, Southampton, Bermuda, pp. 183–197.
  • [5] Bellare, M., Micciancio, D. and Warinschi, B. (2003). Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions, International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, pp. 614–629.
  • [6] Blass, E.-O. and Kerschbaum, F. (2018). Strain: A secure auction for blockchains, European Symposium on Research in Computer Security, Barcelona, Spain, pp. 87–110.
  • [7] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A. and Felten, E.W. (2015). SOK: Research perspectives and challenges for bitcoin and cryptocurrencies, 2015 IEEE Symposium on Security and Privacy, San Jose, USA, pp. 104–121.
  • [8] Chaum, D. and Van Heyst, E. (1991). Group signatures, Workshop on the Theory and Application of of Cryptographic Techniques, Brighton, UK, pp. 257–265.
  • [9] Chen, L. and Pedersen, T.P. (1994). New group signature schemes, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, pp. 171–181.
  • [10] Chen, Y.-H., Chen, S.-H. and Lin, I.-C. (2018). Blockchain based smart contract for bidding system, 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, pp. 208–211.
  • [11] Conti, M., Kumar, E.S., Lal, C. and Ruj, S. (2018). A survey on security and privacy issues of bitcoin, IEEE Communications Surveys & Tutorials 20(4): 3416–3452.
  • [12] Feng, Q., He, D., Zeadally, S., Khan, M.K. and Kumar, N. (2019). A survey on privacy protection in blockchain system, Journal of Network and Computer Applications 126(8): 45–58.
  • [13] Fernandez-Vazquez, S., Rosillo, R., De La Fuente, D. and Priore, P. (2019). Blockchain in fintech: A mapping study, Sustainability 11(22): 6366.
  • [14] Galal, H.S. and Youssef, A.M. (2018). Verifiable sealed-bid auction on the Ethereum blockchain, International Conference on Financial Cryptography and Data Security, Nieuwpoort, Curaçao, pp. 265–278.
  • [15] Gao, W., Hatcher, W.G. and Yu, W. (2018). A survey of blockchain: Techniques, applications, and challenges, 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, pp. 1–11.
  • [16] Jouini, M., Rabai, L.B.A. and Aissa, A.B. (2014). Classification of security threats in information systems, Procedia Computer Science 32: 489–496.
  • [17] Karame, G. (2016). On the security and scalability of bitcoin’s blockchain, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, pp. 1861–1862.
  • [18] Kim, H.-J., Lim, J.I. and Lee, D.H. (2000). Efficient and secure member deletion in group signature schemes, International Conference on Information Security and Cryptology, Seoul, Korea, pp. 150–161.
  • [19] Kobusińska, A., Brzeziński, J., Boroń, M., Inatlewski, Ł., Jabczyński, M. and Maciejewski, M. (2016). A branch hash function as a method of message synchronization in anonymous P2P conversations, International Journal of Applied Mathematics and Computer Science 26(2): 479–493, DOI: 10.1515/amcs-2016-0034.
  • [20] Kong, W., Jiang, B., Fan, Q., Zhu, L. and Wei, X. (2018). Personal identification based on brain networks of EEG signals, International Journal of Applied Mathematics and Computer Science 28(4): 745–757, DOI: 10.2478/amcs-2018-0057.
  • [21] Kosba, A., Miller, A., Shi, E., Wen, Z. and Papamanthou, C. (2016). Hawk: The blockchain model of cryptography and privacy-preserving smart contracts, 2016 IEEE Symposium on Security and Privacy (SP), San Jose, USA, pp. 839–858.
  • [22] Krishna, V. (2009). Auction Theory, Academic Press, San Diego.
  • [23] Lafourcade, P., Nopere, M., Picot, J., Pizzuti, D. and Roudeix, E. (2019). Security analysis of auctionity: A blockchain based e-auction, International Symposium on Foundations & Practice of Security FPS 19, Toulouse, France, pp. 290–307.
  • [24] Lee, C.-C., Ho, P.-F. and Hwang, M.-S. (2009). A secure e-auction scheme based on group signatures, Information Systems Frontiers 11(3): 335–343.
  • [25] Li, S., Zhang, Y., Wang, Y. and Sun, W. (2019). Utility optimization–based bandwidth allocation for elastic and inelastic services in peer-to-peer networks, International Journal of Applied Mathematics and Computer Science 29(1): 111–123, DOI: 10.2478/amcs-2019-0009.
  • [26] Li, X., Jiang, P., Chen, T., Luo, X. andWen, Q. (2017). A survey on the security of blockchain systems, Future Generation Computer Systems 107: 841–853.
  • [27] Nakamoto, S. and Bitcoin, A. (2008). A peer-to-peer electronic cash system, https://bitcoin.org/bitcoin.pdf.
  • [28] Reid, F. and Harrigan, M. (2013). An analysis of anonymity in the bitcoin system, Security and Privacy in Social Networks, Boston, USA, pp. 197–223.
  • [29] Ron, D. and Shamir, A. (2013). Quantitative analysis of the full bitcoin transaction graph, International Conference on Financial Cryptography and Data Security, Okinawa, Japan, pp. 6–24.
  • [30] Sánchez, D.C. (2018). Raziel: Private and verifiable smart contracts on blockchains, arXiv: 1807.09484.
  • [31] Sun, Y., Sun, Y., Luo, M., Gu, L., Zheng, S. and Yang, Y. (2013). Comment on Lee et al.’s group signature and e-auction scheme, Information Systems Frontiers 15(1): 133–139.
  • [32] Tsai, C.-Y., Ho, P.-F. and Hwang, M.-S. (2018). A secure group signature scheme., IJ Network Security 20(2): 201–205.
  • [33] Wang, X., Zha, X., Ni, W., Liu, R.P., Guo, Y.J., Niu, X. and Zheng, K. (2019). Survey on blockchain for internet of things, Computer Communications 136: 10–29.
  • [34] Zhang, R., Xue, R. and Liu, L. (2019). Security and privacy on blockchain, ACM Computing Surveys 52(3): 1–34.
  • [35] Zheng, H., Wu, Q., Xie, J., Guan, Z., Qin, B. and Gu, Z. (2020). An organization-friendly blockchain system, Computers & Security 88: 101598.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73e7a14d-703f-40b7-a658-42e0d8f1c5dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.