PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effects of spark assist on HCCI combustion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
HCCI (homogeneous charge compression ignition) combustion is initiated by compression temperature and is independent of spark discharge. However, spark discharge can be applied under certain conditions to achieve hybrid combustion, where combustion by flame propagation is followed by auto-ignition of the unburned mixture. Spark assist can be applied to improve combustion stability at low loads or to reduce pressure rise rates under high load regime. In the current study variable spark ignition timing was applied for stoichiometric HCCI combustion, achieved using negative valve overlap technique. Under investigated conditions increase of nitrogen oxides emissions, due to flame propagation, was not observed. To provide more insight into combustion evolution, double Wiebe function was fitted to experimental heat release rates. It was found that only less than 10% of mixture was burned by flame propagation, even for very advanced spark discharge.
Czasopismo
Rocznik
Strony
73--77
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering at Lublin University of Technology
autor
  • Faculty of Mechanical Engineering at Lublin University of Technology
autor
  • Faculty of Mechanical Engineering at Lublin University of Technology
autor
  • Department of Applied Physics at University of Salamanca
Bibliografia
  • [1] Denis-Vidal L., Cherfi Z., Talon V., Brahmi H. Parameter identifiability and parameter estimation of a diesel engine combustion model. Journal of Applied Mathematics and Physics, 2014;2131–137.
  • [2] Hunicz J. An experimental study of negative valve overlap injection effects and their impact on combustion in a gasoline HCCI engine. Fuel 2014;117:236–250.
  • [3] Hunicz J. On cyclic variability in a residual effected HCCI engine with direct gasoline injection during negative valve overlap. Mathematical Problems in Engineering 2014, Article ID 359230.
  • [4] Hunicz J., Medina A., Litak G., Curto-Risso P.L., Guzmán-Vargas L. Effects of direct fuel injection strategies on cycle-by-cycle variability in a gasoline homogeneous charge compression ignition engine: sample entropy analysis. Entropy 2015;17:539–559.
  • [5] Lavy J., Dabadie J.Ch., Angelberger Ch., Duret P. et al. Innovative ultra-low NOx controlled auto-ignition combustion process for gasoline engines: the 4-SPACE project. SAE Technical Paper 2000-01-1837; 2000.
  • [6] Najt P.M., Foster D.E. Compression-ignited homogeneous charge combustion. SAE Technical Paper 830264; 1983.
  • [7] Olesky L.M., Lavoie G.A., Assanis D.N., Wooldridge M.S., Martz J.B. The effects of diluent composition on the rates of HCCI and spark assisted compression ignition combustion. Applied Energy 2014;124:186–198.
  • [8] Olesky L.M., Martz J.B., Lavoie G.A., Vavra J., Assanis D.N., Babajimopoulos A. The effects of spark timing, unburned gas temperature, and negative valve overlap on the rates of stoichiometric spark assisted compression ignition combustion. Applied Energy 2013;105:407–417.
  • [9] Onishi S., Jo S., Shoda K., Jo P., Kato S. Active thermo-atmosphere combustion (ATAC) – a new combustion process for internal combustion engines. SAE Technical Paper 790501; 1979.
  • [10] Urushihara T., Yamaguchi K., Yoshizawa K., Itoh T. A study of a gasoline-fueled compression ignition engine. Expansion of HCCI operation range using SI combustion as a trigger of compression ignition. SAE Technical Paper 2005-01-0180; 2005.
  • [11] Wang Z., Wang J-X., Shuai S-J., Tian G-H., An X., Ma Q-J. Study of the effect of spark ignition on gasoline HCCI combustion. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2006;220:817–825.
  • [12] Xie H., Li L., Chen T., Yu W., Wang X., Zhao H. Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load. Applied Energy 2013;101:622–633.
  • [13] Yao M., Zheng Z., Liu H. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science 2009;35:398-437.
  • [14] Yeliana, Cooney C., Worm J., Michalek D., Naber J. Wiebe function parameter determination for mass fraction burn calculation in an ethanol-gasoline fuelled SI engine. Journal of KONES Powertrain and Transport 2008;15:567–574.
  • [15] Yun H., Wermuth N., Najt P. High load HCCI operation using different valving strategies in a naturally-aspirated gasoline HCCI engine. SAE International Journal of Engines 2011;4:1190–1201.
  • [16] Zhao H., Li J., Ma T., Ladommatos N. Performance and analysis of a 4-stroke multi-cylinder gasoline engine with CAI combustion. SAE Technical Paper 2002-01-0420; 2002.
  • [17] Zigler B.T., Keros P.E., Helleberg K.B., Fatouraie M., Assanis D., Wooldridge M.S. An experimental investigation of the sensitivity of the ignition and combustion properties of a single-cylinder research engine to spark-assisted HCCI. International Journal of Engine Research 2011;12:353–375.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73e2ee3c-aa41-498b-89d2-733dbfb69b21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.