PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Law of Large Numbers for Nonmeasurable Identically Distributed Random Variables

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Ω be a countable infinite product Ω<sub>1</sub>N of copies of the same probability space Ω1, and let {Ξn} be the sequence of the coordinate projection functions from Ω to~Ω<sub>1</sub>. Let Ψ be a possibly nonmeasurable function from Ω<sub>1</sub> to R, and let X<sub>n</sub>(ω)=Ψ(Ξn(ω)). Then we can think of {X<sub>n</sub>} as a sequence of independent but possibly nonmeasurable random variables on Ω. Let S<sub>n</sub>=X<sub>1</sub>+⋯+X<sub>n</sub>. By the ordinary Strong Law of Large Numbers, we almost surely have E∗[X1]≤lim infSn/n≤lim supSn/n≤E∗[X<sub>1</sub>], where E∗ and E∗ are the lower and upper expectations. We ask if anything more precise can be said about the limit points of Sn/n in the nontrivial case where E∗[X<sub>1</sub>]<E∗[X<sub>1</sub>], and obtain several negative answers. For instance, the set of points of Ω where S<sub>n</sub>/n converges is maximally nonmeasurable: it has inner measure zero and outer measure one.
Rocznik
Strony
161--168
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
  • Department of Philosophy Baylor University One Bear Place #97273 Waco, TX 76798-7273, U.S.A.
Bibliografia
  • [1] R. Durrett, Probability: Theory and Examples, 4th ed., Cambridge Univ. Press, Cambridge, 2010.
  • [2] P. R. Halmos, Measure Theory, Springer, New York, 1974.
  • [3] J. Hoffmann-Jørgensen, The law of large numbers for nonmeasurable and nonseparable random elements, Astérisque 131 (1985), 299–356.
  • [4] J. Hoffmann-Jørgensen, Perfect independence and stochastic inequalities, MaPhySto, Research Report, Dept. Math. Sci., Univ. of Aarhus, 2002, http://www.maphysto.dk/cgi-bin/gp.cgi?publ=375.
  • [5] J. N. McDonald and N. A. Weiss, A Course in Real Analysis, Academic Press, San Diego, 1999.
  • [6] A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes. With Applications to Statistics, Springer, New York, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73e2a5c5-affe-4292-861c-13db4b87f13f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.