PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Induction surface hardening – comparison of different methods

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd metod hartowania indukcyjnego powierzchniowego elementów stalowych
Języki publikacji
EN
Abstrakty
EN
The overview of the induction surface hardening methods were presented in the paper. Two examples are considered: continual hardening of cylinders made of steel 38Mn6 and dual frequency hardening of gear wheels made of steel 40 HNMA. Results of measurements provided at the experimental stand were presented. Acceptable accordance between measurements and numerical computations were obtained. Final conclusions were formulated.
PL
W pracy dokonano przeglądu metod hartowania indukcyjnego powierzchniowego elementów stalowych. Rozpatrzono dwa przypadki: hartowania przelotowego wałków ze stali 38Mn6 oraz hartowania dwuczęstotliwościowego kół zębatych ze stali 40HNMA. Przedstawiono wyniki pomiarów na stanowisku doświadczalnym. Uzyskano zadowalającą zbieżność między wynikami pomiarów i obliczeń numerycznych.
Rocznik
Strony
6--11
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Politechnika Śląska, Katedra Informatyki Przemysłowej, ul. Krasińskiego 8, 40-019 Katowice
Bibliografia
  • [1] Rudnev V., Loveless D., Cook R., L., Handbook of Induction Heating. Second Edition, CRC Press. Taylor and Francis Group, (2017), p. 730
  • [2] Rudnev, V., Totten, G. Induction Heating and Heat Treatment, ASM International, 4C (2014), p. 820
  • [3] Barglik J., Induction heating of technological processes. Heat Treatment. Mathenmatical modelling and Experimental Verification. Nagrzewanie indukcyjne w procesach technologicznych. Obróbka cieplna. Modelowanie matematyczne I weyfikacja doświadczalna. Printed House of the Silesian University of Technology in Gliwice (in Polish) (2015), p. 177
  • [4] Barglik J., Mathematical modelling of induction surface hardening, COMPEL 35 (2016), n. 4, 1403–1417
  • [5] Sajdak C., Samek E., Induction Heating Śląsk, (1987) p.360 (in Polish)
  • [6] Rudnev V., The day after tomorrow – the future of induction heating, Heat Processing (2017) n 4, 45–52
  • [7] Barglik J., Smalcerz A., Influence of the magnetic permeability on modelling of induction surface hardening. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering 36 Issue 2, (2017), 555–564
  • [8] Schubotz S.,B. Nacke B., Modeling and verification of convective heat transfer coefficient for induction applications, International Journal for Electromagnetics and Mechanics, 53, (2017), 79–88
  • [9] Barglik J., Smagór A., Smalcerz A., Computer simulation of single frequency induction surface hardening of gear wheels: analysis of selected problems International Journal of Microstructure and Material Properties (2018) (in print)
  • [10] Barglik J., Doležel I., Karban P., Continual induction hardening of 3D steel bodies of specific geometries Przegląd Elektrotechniczny (2007) nr 3, 75-77
  • [11] Barglik J., Induction Hardening of Steel Tubes by Means of Internal Inductor, Journal of Iron and Steel Research International, 19, (2012) Supplement 1-2, 722–725
  • [12] Barglik J., Dolezel I., Ducki K., Ulrych B., Mathematical and computer modelling of induction heating and consequent hardening of circular saw, Chapter in book Electromagnetic Fields in Electrical Engineering, Studies in Applied Electromagnetics and Mechanics. 22 (2002), 351 - 356
  • [13] Lupi S., Fundamentals of Electroheat, Electrical Technologies for Process Heating. Springer. Switzerland (2017)
  • [14] User Guide Flux 12 General tools, Geometry & mesh, Vol. 1, CEDRAT, (2015)
  • [15] Barglik J., Smalcerz A., Smagór A., Paszek P., Analysis of continuous induction hardening of steel cylinder element made of steel 38Mn6, Archives of Metallurgy and Materials, 60 (2015), n. 4, 2855 – 2860
  • [16] Smalcerz A., Barglik J., Kuc D., Ducki K., Wasiński S., The microstructure and mechanical properties of cylindrical elements from steel 38Mn6 after continuous induction heating, Archives of Metallurgy and Materials, 61 (2016), n. 4, 1969-1974
  • [17] Lupi S., Forzan M., Alifierov A., Induction and direct resistance heating. Theory and numerical modelling, Springer, (2015)
  • [18] Spezzapria M., Forzan M., Dughiero F., Numerical Simulation of Solid–Solid Phase Transformations During Induction Hardening, IEEE Transactions of Magnetics, 52 (2016), n. 3, 740–743
  • [19] Schlesselmann D., Nikanorov A., Nacke B., Galunin S., Schon M., Yu Z., Numerical calculation and comparison of temperature profiles and martensite microstructures in induction surface hardening process, International Journal for Electromagnetics and Mechanics, 44 (2014), 137–145
  • [20] Barglik J., Przyłucki R., Smalcerz A., Doležel I., 3D Modeling of Induction Hardening of Gear Wheels. J. of Computational and Applied Mathematics, 270 (2014) 231–240
  • [21] Barglik J., Induction hardening of steel elements with complex shapes, Przegląd Elektrotechniczny 94 (2018) n. 4, 51–54
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73e1fc2d-9423-44eb-9b0b-152b2cc2ad69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.