Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article discusses innovative approaches to icebreaking and the optimisation parameters of Air Cushion Icebreaking Platforms (AC IBP). The study is conducted in the context of the need to ensure year-round navigation on northern rivers and potentially support Arctic expeditions. The primary method of icebreaking involves creating an air cavity under the ice, causing it to break under its own weight. This research employs both theoretical mathematical models and experimental data to determine the optimal parameters of AC IBP, such as the length and width of the air cushion, cushion pressure, and the power of the lifting complex. The results demonstrate the high efficiency of AC IBP in breaking ice up to 400 mm thick, exceeding design specifications. Optimising the AC IBP parameters helps to achieve minimal energy consumption with maximum efficiency. Experimental tests confirm the reliability of the design and compliance with project specifications. Further research aims to improve the AC IBP design and expand its operational conditions.
Czasopismo
Rocznik
Tom
Strony
4--12
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Zhejiang International Maritime College, Zhoushan, China
autor
- Design Bureau IMT, LLC, Mykolaiv , Ukraine
autor
- Design Bureau IMT, LLC, Mykolaiv , Ukraine
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv , Ukraine
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv , Ukraine
Bibliografia
- 1. Ionov BP, Gramuzov EM, Zuev VA. Proektirovanie ledokolov [Design of Icebreakers]. Sudostroenie, Saint Petersburg; 2013. 512 p (in Russian).
- 2. Wade RG. Air Cushion Technology in Icebreaking Hovering. Hovering Craft and Hydrofoil 1975; 14(8): 20-23.
- 3. Zuev VA. Novye tekhnologii razrusheniya ledyanogo pokrova i prodleniya navigatsii sudami na vozdushnoy podushke [New technologies for ice cover destruction and extending navigation with air cushion vessels]. Voprosy morskoy ledotekhniki: Trudy TsNII im. akad. A. N. Krylova; 2007; 34(318): 78-79 (in Russian).
- 4. Gramuzov EM, Moskvitcheva YA, Zueva EV. Tekhnikoekonomicheskiy analiz razrusheniya ledyanogo pokrova i prodleniya navigatsii s ispolzovaniem tekhnologiy na vozdushnoy podushke [Techno-economic analysis of ice cover destruction and extending navigation using air cushion technologies]. Sovremennye problemy nauki i obrazovaniya 2014; 6: p. 12. Available at: http://www.rae.ru (in Russian)
- 5. Robertson BM. The High-Speed Method of Air Cushion Icebreaking. Proc. of the Canadian Aeronautics and Space Journal 10th Air Cushion Technology Symposium, Calgary, October 1977: 133-140.
- 6. Zhestkaya VD, Kozin VM. Issledovaniya vozmozhnostey razrusheniya ledyanogo pokrova amfibiiynymi sudami na vozdushnoy podushke rezonansnym metodom [Research on the possibilities of ice cover destruction by amphibious air cushion vessels using the resonance method]. Dalnauka, Vladivostok, Russia; 2003. 161 p (in Russian).
- 7. Kozin VM, Zemlyak VL. Fizicheskie osnovy razrusheniya ledyanogo pokrova rezonansnym metodom [Physical foundations of ice cover destruction by the resonance method]. IMiM DVO RAN – PGSU im. Sholom-Aleykhema, Komsomolsk-on-Amur, Russia; 2013. 250 p (in Russian).
- 8. Dvoychenko YA. Chislenaya model razrusheniya ledyanogo pokrova pri dvizhenii SVP s nizkoy skorostyu [Numerical model of ice cover destruction during low-speed movement of an ACV]. Voprosy teorii prochnosti i proektirovaniya sudov plavayushchikh vo l’dakh: Mezhvuzovskiy sbornik. Gorkovskiy Politekhnicheskiy in-t im. A. A. Zhdanova, Gorky; 1984: 81–88 (in Russian).
- 9. Knyazkov VV. Vliyanie vozdushnoy polosti na napryazhennodeformirovannoe sostoyanie ledyanogo pokrova [Influence of an air cavity on the stress-strain state of the ice cover]. Voprosy teorii prochnosti i proektirovaniya sudov plavayushchikh vo l’dakh: Mezhvuzovskiy sbornik. Gorkovskiy Politekhnicheskiy in-t im. A. A. Zhdanova, Gorky; 1984. pp. 66–69 (in Russian).
- 10. Zlobin GP, Simonov YA. Suda na vozdushnoy podushke [Air cushion vehicles]. Sudostroenie, Leningrad, Russia; 1971. 212 p (in Russian).
- 11. Kolyzaev BA, Kosorukov AI, Litvinenko VA. Spravochnik po proektirovaniyu sudov s dinamicheskimi printsipami podderzhaniya [Handbook on the design of vessels with dynamic support principles]. Sudostroenie, Leningrad, Russia; 1980. 472 p (in Russian).
- 12. Demeshko GF. Proektirovanie sudov. Amfibiyne suda na vozdushnoy podushke [Ship design. Amphibious air cushion vessels]. Sudostroenie, Saint Petersburg, Russia; 1992. Vol. 1, 269 p (in Russian).
- 13. Demeshko G F. Proektirovanie sudov. Amfibiyne suda na vozdushnoy podushke [Ship design. Amphibious air cushion vessels]. Sudostroenie, Saint Petersburg, Russia; 1992. Vol. 2, 329 p (in Russian).
- 14. Dekhtyar MB, Rybakov VK. Ostoychivost ledokolnykh platform na vozdushnoy podushke [Stability of air cushion icebreaking platforms]. Voprosy teorii prochnosti i proektirovaniya sudov plavayushchikh vo l’dakh, Gorkovskiy Politekhnicheskiy in-t im. A. A. Zhdanova, Gorky; 1984. pp. 75-81 (in Russian).
- 15. Dekhtyar M B. Obespechenie ostoychivosti pri proektirovanii bolshegruznykh i ledokolnykh platform na vozdushnoy podushke [Ensuring stability in the design of heavy-duty and icebreaking air cushion platforms]. In Mezhvuzovskiy sbornik “Voprosy proektirovaniya sudov plavayushchikh vo l’dakh”, Gorkovskiy Politekhnicheskiy in-t im. A. A. Zhdanova, Gorky; 1988. pp 57-62 (in Russian).
- 16. Zuev V A. Soprotivlenie platform na vozdushnoy podushke pri malykh chislakh Fruda [Resistance of air cushion platforms at low Froude numbers]. Avtomatizatsiya proektirovaniya sudov novykh tipov; 1989. 6, 15-24 (in Russian).
- 17. Pogorelova AV. Osobennosti volnovogo soprotivleniya SVPA pri nestoitsionarnom dvizhenii po ledyanomu pokrovu [Features of wave resistance of an ACV during unsteady motion on an ice cover]. PMTF (Prikladnaya Mekhanika i Tekhnicheskaya Fizika); 2008: 49(1), 89-99 (in Russian).
- 18. Moskvitcheva YA. Vliyanie splochennosti bitogo l’da i shiriny ledovogo kanala na ledovoe soprotivlenie sudna [Influence of brash ice concentration and channel width on the ice resistance of a ship]. Trudy Nizhnegorod. gos. tekhn. un-ta; 2015: 4(III), pp. 228-233 (in Russian).
- 19. Ryvlin AY. Eksperimentalnoe izuchenie treniya l’da [Experimental study of ice friction]. Trudy AANII 1975; 309: 186-199 (in Russian).
- 20. Larin AG, Moskvicheva YA. Otsenka napryazhennodeformirovannogo sostoyaniya ledyanogo pokrova pri dvizhenii nad nim ledokolnykh platform na vozdushnoy podushke [Assessment of the stress-strain state of the ice cover during movement of air cushion icebreaking platforms above it]. Sovremennye problemy nauki i obrazovaniya 2015; 2. Available at: https://science-education.ru/ru/article/view?id=21986 (in Russian).
- 21. Smirnov YI. Rezul’taty ekspluatatsionnykh ispytaniy platformy na vozdushnoy podushke VP-1 [Results of operational tests of the VP-1 air cushion platform]. Perspektivnye tipy sudov: morekhodnye i ledovye kachestva. TsNIIMF; 1985: 45-50 (in Russian).
- 22. Zuev VA, Semenova NM. Modelnye ispytaniya ledokolnykh platform na vozdushnoy podushke na tikhoy vode [Model tests of air cushion icebreaking platforms in calm water]. Vestnik Gosudarstvennogo Universiteta Morskogo i Rechnogo Flota im. adm. S. O. Makarova 2012; 1: 125-131 (in Russian).
- 23. Zuev VA, Kalinina NV. Modelnye ispytaniya ledokolnoy platformy na vozdushnoy podushke nad tverdym ekranom [Model tests of an air cushion icebreaking platform above a solid screen]. In Aktual’nye problemy sovremennoy nauki: Materials of the International Scientific-Practical Conference, Ufa, Russia; 13-14 December 2015: 140-150 (in Russian).
- 24. Zaytsev VV, Zaytsev VV, Zaytsev DV, Lukashova VV, Zaytseva ON. Ledokolnaya platforma na vozdushnoy podushke [Air cushion icebreaking platform]. In Innovations in Shipbuilding and Ocean Engineering: Proceedings of the IX International Scientific-Technical Conference, Mykolaiv, Ukraine 2018; 293-296 (in Russian).
- 25. Zaytsev VV, Penchev P, Zaytsev VV, Zaytsev DV, Velyaev EV. Raschet i proektirovanie gibkogo ograzhdeniya ledokolnoy platformy na vozdushnoy podushke [Calculation and design of the flexible skirt of an air cushion icebreaking platform]. In Innovations in Shipbuilding and Ocean Engineering: Proceedings of the X International Scientific-Technical Conference (Vol. 2), Mykolaiv, Ukraine; 2019: 9-15 (in Russian).
- 26. Zaytsev VV, Zaytsev VV, Zaytsev DV, Velyaev EV. Raschet ostoychivosti ledokolnoy platformy na vozdushnoy podushke v rezhime viseniya nado l’dom bez khoda [Calculation of the stability of an air cushion icebreaking platform in the hovering mode over ice without forward motion]. In Modern Technologies of Designing, Building, Operation and Repair of Ships, Marine Engineering Facilities and Engineering Structures: Proc. of the All-Ukrainian Scientific-Technical Conference (with International Participation), Mykolaiv, Ukraine; 2020: 47-51 (in Russian).
- 27. Lacourt EJ, Kim JK. Mathematical Model of Icebreaking with an ACV. ARCTEC Canada Ltd., Technical Note 39-2; 1974.
- 28. Carter D. Mathematical Analysis of Icebreaking by Air Cushion Platform. Transport Canada, September 1977; No. 1: pp. 1-13.
- 29. Zaytsev VV, Gao L, Zaytsev DV, Zaytsev VV. Proektirovanie, stroitel’stvo i ispytaniya ledokolnoy platformy na vozdushnoy podushke [Design, construction and testing of an air cushion icebreaking platform]. In Innovations in Shipbuilding and Ocean Engineering: Proceedings of the XII International Scientific-Technical Conference, Mykolaiv, Ukraine 2021; 106-110 (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73df5ce9-c865-4707-a017-3cdad5b8f6fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.