PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative assessment of the corrosion process of orthodontic archwires made of stainless steel, titanium–molybdenum and nickel–titanium alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The phenomenon of corrosion of orthodontic appliances is of interest to both clinicians and researchers dealing with the issue of biocompatibility of medical materials. The oral cavity, due to its temperature fluctuations, changing pH, high humidity, action of mechanical forces and the presence of microorganisms is a favorable environment for degradation of dental materials. This article presents the comparative assessment of the intensity of corrosion of orthodontic archwires made of alloy steel, nickel–titanium and titanium–molybdenum alloys in laboratory conditions. Corrosion resistance examinations were carried out by means of the impedance and the potentiodynamic methods using an Autolab PGSTAT100 potentiostat/galwanostat (Eco Chemie B.V., Holand) with FRA2 module, in non-deaerated artificial saliva solution at 37 °C. An analysis of the impendence method's data showing that the highest corrosion resistance is observed for NiTi arches (3M, USA), while the lowest resistance for SS arches (3M, USA). These observations were confirmed by the data obtained from potentiodynamic tests; it was observed that the average corrosion current density [Icor] was the lowest for nickel–titanium archwires (3M, USA) and averaged 2.50 × 10−3 μA/cm2. The highest Icor corrosion current was observed in the case of steel wires from the same manufacturer and averaged 4.96 × 10−2 μA/cm2.
Rocznik
Strony
941--947
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Orthodontics, Medical University of Warsaw, Poland
autor
  • Division of Facial Abnormalities, Department of Orthodontics, Medical University of Wroclaw, Poland
autor
  • Wroclaw University Hospital, Wroclaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
Bibliografia
  • [1] S. Luft, L. Keilig, A. Jäger, C. Bourauel, In-vitro evaluation of the corrosion behavior of orthodontic brackets, Orthod. Craniofac. Res. 12 (1) (2009) 43–51.
  • [2] H.L. Filho, L.E.G. Maia, M.V.A. Araújo, A.C.O. Ruellas, Influence of optical properties of esthetic brackets (color, translucence and fluorescence) on visual perception, Am. J. Orthod. Dentofac. Orthop. 141 (4) (2012) 460–467.
  • [3] N. Shirakawa, T. Iwata, S. Miyake, T. Otsuka, S. Koizumi, T. Usui, T. Kawata, Development of the aesthetic orthodontic appliances using a silver plating process: the report on peel resistance, BioMed Res. Int. 28 (7) (2017) 3217–3221.
  • [4] R.S. Kotha, R.K. Alla, M. Shammas, K. Ravi, An overview of orthodontic wires, Trends Biomater. Artif. Organs 28 (1) (2014) 32–36.
  • [5] A. Khamatkar, Ideal properties of orthodontic wires and their clinical implications – a review, IOSR J. Dent. Med. Sci. 14 (1) (2015) 47–50.
  • [6] M.A. Ferreira, M.A. Luersen, P.C. Borges, Nickel–titanium alloys: a systematic review, Dent. Press J. Orthod. 17 (3) (2012) 71–82.
  • [7] K. House, F. Sernetz, D. Dymock, J.R. Sandy, A.J. Ireland, Corrosion of orthodontic appliances – should we care? Am. J. Orthod. Dentofac. Orthop. 133 (4) (2008) 584–592.
  • [8] R.J. Moore, J.T.F. Watts, J.A.A. Hood, D.J. Burritt, Intra-oral temperature variation over 24 hours, Eur. J. Orthod. 21 (1999) 249–261.
  • [9] A. Bakhtari, T.G. Bradley, W.K. Lobb, D.W. Berzins, Galvanic corrosion between various combinations of orthodontic brackets and archwires, Am. J. Orthod. Dentofac. Orthop. 140 (1) (2011) 25–31.
  • [10] F. Heravi, N. Mokhber, E. Shayan, Galvanic corrosion among different combination of orthodontic archwires and stainless steel brackets, J. Dent. Mater. Techn. 3 (3) (2014) 118–122.
  • [11] R.S. Nayak, B. Shafiuddin, A. Pasha, K. Vinay, A. Narayan, S.V. Shetty, Comparison of galvanic currents generated between different combinations of orthodontic brackets and archwires using potentiostat: an in vitro study, J. Int. Oral Health 7 (7) (2015) 29–35.
  • [12] M. Mikulewicz, K. Chojnacka, Release of metal ions from orthodontic appliances by in vitro studies: a systematic literature review, Biol. Trace Elements Res. 139 (3) (2011) 241–256.
  • [13] E. Miňano-Fernandez, C. Ortiz, A. Vicente, J.L. Calvo, A.J. Ortiz, Metallic ion content and damage to the DNA in oral mucosa cells of children with fixed orthodontic appliances, Biometals 24 (5) (2011) 935–941.
  • [14] J. Inovay, J. Banoczy, The role of electrical potential differences in the etiology of chronic diseases of the oral mucosa, J. Dent. Res. 40 (5) (1961) 884–890.
  • [15] J.C.J.C. Wataha, J.L. Drury, W.O. Chung, Nickel alloys in the oral environment, Expert Rev. Med. Devices 4 (10) (2013) 519– 539.
  • [16] T.P. Chaturvedi, S.N. Upadhayay, An overview of orthodontic material degradation in oral cavity, Indian J. Dent. Res. 21 (2) (2010) 275–284.
  • [17] A. Kocijan, D. Kek Merl, M. Jenko, The corrosion behaviour of austenic and duplex stainless steels in artificial saliva with the addition of fluoride, Corros. Sci. 53 (2011) 776–783.
  • [18] C. Suárez, T. Vilar, P. Sevilla, J. Gil, In vitro corrosion behavior of lingual orthodontic archwires, Int. J. Corros. Hindawi (2011), http://dx.doi.org/10.1155/2011/482485, Article ID 482485.
  • [19] M. Pakshir, T. Bagheri, M.R. Kazemi, In vitro evaluation of the electrochemical behaviour of stainless steel and NiTi orthodontic archwires at different temperatures, Eur. J. Orthod. 35 (2013) 407–413.
  • [20] A.M. Barcelos, A.S. Luna, N. de Assis Ferreira, A.V.C. Braga, D. C.B. do Lago, L.F. de Senna, Corrosion evaluation of orthodontic wires in artificial saliva solutions by using response surface methodology, Mater. Res. 16 (1) (2013) 50–64.
  • [21] D.K. Pun, D.W. Berzis, Corrosion behavior of shape memory, superelastic and nonsuperelastic nickel–titanium-based orthodontic wires at various temperatures, Dent. Mater. 24 (2) (2008) 221–227.
  • [22] J. Briceno, A. Romeu, E. Espinar, J.M. Llamas, F.J. Gil, Influence of microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires, Mater. Sci. Eng. C 3 (8) (2013) 4989–4993.
  • [23] M. Krishnan, S. Seema, A.V. Kumar, N.P. Varthini, K. Sukumaran, V.R. Pawar, V. Arora, Corrosion resistance of surface modified nickel titanium archwires, Angle Orthod. 84 (2) (2014) 358–367.
  • [24] V. Katić, H. Otmaćić Ćurković, D. Semenski, G. Baršić, K. Marušić, S. Špalj, Influence of surface layer on mechanical and corrosion properties of nickel–titanium orthodontic wires, Angle Orthod. 84 (6) (2014) 1041–1048.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73de7ece-4e25-41ab-817e-a6b3686d93a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.