PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method for performing 3D motion tracking of the shoulder joint with respect to the thorax, using MARG sensors and a data fusion algorithm, is proposed. Two tests were done: 1) qualitative and quantitative analysis of the response of the sensors, static position and during motion, with and without the proposed data fusion algorithm; 2) motion tracking of the shoulder joint with the upper arm, the thorax, and the shoulder joint respect to the thorax. Qualitative analysis of experimental results showed that despite slight variations regarding the evaluated motion, these variations did not have repercussions on the estimated orientation. Quantitative analysis showed that the estimated orientation did not exhibit significant variations, in five minutes, such as drift errors (about 0.18 in static position and less than 1.88 during motion), variations due to noise or magnetic disturbances (RMSE less than 0.048 static position and less than 18 during motion); no singularity problems were reported. The main contributions of this research are a multisensor data fusion algorithm, which combines the complementary properties of gyroscopes, accelerometers, and magnetometers in order to estimate the 3D orientation of two body segments separately and with respect to another body segment considering the spatial relationship between them; and a method for performing 3D motion tracking of two body segments, based on the estimation of their orientation, including motion compensation. The proposed method is applicable to monitoring devices based on IMU/MARG sensors; the performance was evaluated using a customized motion analysis system.
Twórcy
  • Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Académia de Física, Mexico City, Mexico
  • Division of Research in Medical Engineering, Instituto Nacional de Rehabilitación, Calzada Mexico-Xochimilco Num. 289, Arenal de Guadalupe, Tlalpan, Mexico City, Mexico
  • Center for Research and Advanced Studies of the National Polytechnic Institute, Electrical Engineering Department/ Bioelectronics Section, Mexico City, Mexico
  • Center for Research and Advanced Studies of the National Polytechnic Institute, Electrical Engineering Department/ Bioelectronics Section, Mexico City, Mexico
  • Instituto Politécnico Nacional, Centro de Investigación en Computación, Laboratorio de Robótica y Mecatrónica, Mexico City, Mexico; Tecnológico de Monterrey, Unidad Guadalajara, Zapopan, Jalisco, Mexico
Bibliografia
  • [1] Chen H, Schall Jr MC, Fethke N. Accuracy of angular displacements and velocities from inertial-based inclinometers. Applied ergonomics 2018;67:151–61.
  • [2] Feng K, Li J, Zhang X, Shen C, Bi Y, Zheng T, et al. Correction: A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically- Intuitive Correction Algorithm. Sensors 2017;17:2146. Sensors. 2017;17:2530.
  • [3] Douphrate DI, Fethke NB, Nonnenmann MW, Rosecrance JC, Reynolds SJ. Full shift arm inclinometry among dairy parlor workers: A feasibility study in a challenging work environment. Applied ergonomics 2012;43:604–13.
  • [4] Yoon PK, Zihajehzadeh S, Kang B-S, Park EJ. Robust biomechanical model-based 3-D indoor localization and tracking method using UWB and IMU. IEEE Sensors Journal 2017;17:1084–96.
  • [5] Hung T, Suh Y. Inertial sensor-based two feet motion tracking for gait analysis. Sensors 2013;13:5614–29.
  • [6] Kang CW, Kim HJ, Park CG. A human motion tracking algorithm using adaptive EKF based on Markov chain. IEEE Sensors Journal 2016;16:8953–62.
  • [7] Filippeschi A, Schmitz N, Miezal M, Bleser G, Ruffaldi E, Stricker D. Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors 2017;17:1257.
  • [8] Sabatini AM. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 2011;11:1489–525.
  • [9] Madgwick SO, Harrison AJ, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm. Rehabilitation Robotics (ICORR). 2011 IEEE International Conference on: IEEE. 2011. pp. 1–7.
  • [10] Fourati H. Heterogeneous Data Fusion Algorithm for Pedestrian Navigation via Foot-Mounted Inertial Measurement Unit and Complementary Filter. IEEE Transactions on Instrumentation and Measurement 2015;221–9.
  • [11] Li C, Wang Z, Liu H. Novel method to integrate MARG and an odometer into AHRS for moving vehicles. Advances in Mechanical Engineering 2017;9:1–15.
  • [12] Amasay T, Zodrow K, Kincl L, Hess J, Karduna A. Validation of tri-axial accelerometer for the calculation of elevation angles. International Journal of Industrial Ergonomics 2009;39:783–9.
  • [13] Korshøj M, Skotte JH, Christiansen CS, Mortensen P, Kristiansen J, Hanisch C, Holtermann A. Validity of the Acti4 software using ActiGraph GT3X+ accelerometer for recording of arm and upper body inclination in simulated work tasks. Ergonomics 2014;57:247–53.
  • [14] Olivares A, Olivares G. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering. Measurement Science and Technology 2011;22:025801.
  • [15] Fethke NB, Peters TM, Leonard S, Metwali M, Mudunkotuwa IA. Reduction of biomechanical and welding fume exposures in stud welding. Annals of Occupational Hygiene 2015;60:387–401.
  • [16] Wahlström J, Mathiassen SE, Liv P, Hedlund P, Ahlgren C, Forsman M. Upper arm postures and movements in female hairdressers across four full working days. Annals of occupational hygiene 2010;54:584–94.
  • [17] De Vries WHK, Veeger HEJ, Baten CTM, Van Der Helm FCT. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait & posture 2009;29:535–41.
  • [18] Karina Lebel PB. Hung Nguyen and Christian Duval. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensor accuracy. BioMedical Engineering OnLine 2017;16:16.
  • [19] Zabat M, Ababou A, Ababou N, Dumas R. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement—a proof of concept. Medical & biological engineering & computing 2019;57:2449–60.
  • [20] Qiu S, Wang Z, Zhao H, Qin K, Li Z, Hu H. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Information Fusion 2018;39:108–19.
  • [21] Qiu S, Liu L, Zhao H, Wang Z, Jiang Y. MEMS inertial sensors based gait analysis for rehabilitation assessment via multi- sensor fusion. Micromachines 2018;9:442.
  • [22] Paulich M, Schepers M, Rudigkeit N, Bellusci G. Xsens MTw Awinda: Miniature wireless inertial-magnetic motion tracker for highly accurate 3D kinematic applications. Xsens: Enschede The Netherlands 2018.
  • [23] Burns A, Greene BR, McGrath MJ, O'Shea TJ, Kuris B, Ayer SM, et al. SHIMMERTM–A wireless sensor platform for noninvasive biomedical research. Sensors Journal IEEE 2010;10:1527–34.
  • [24] Lorincz K, Chen B-r, Challen GW, Chowdhury AR, Patel S, Bonato P, et al. Mercury: a wearable sensor network platform for high-fidelity motion analysis. SenSys 2009;183–96.
  • [25] Rodríguez-Martín D, Pérez-López C, Samà A, Cabestany J, Català A. A wearable inertial measurement unit for long-term monitoring in the dependency care area. Sensors 2013;13:14079–104.
  • [26] Chen X. Human Motion Analysis with Wearable Inertial Sensors; 2013.
  • [27] Luttwak A. Human Motion Tracking and Orientation Estimation using inertial sensors and RSSI measurements:. The Hebrew University of Jerusalem Israel; 2011.
  • [28] Peppoloni L, Filippeschi A, Ruffaldi E, Avizzano CA. A novel 7 degrees of freedom model for upper limb kinematic reconstruction based on wearable sensors. Intelligent Systems and Informatics (SISY). 2013 IEEE 11th International Symposium on: IEEE. 2013. pp. 105–10.
  • [29] Cho Y-S, Jang S-H, Cho J-S, Kim M-J, Lee HD, Lee SY, et al. Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems. Annals of rehabilitation medicine 2018;42:872.
  • [30] Lai Y-C, Chang C-C, Tsai C-M, Huang S-C, Chiang K-W. A knowledge-based step length estimation method based on fuzzy logic and multi-sensor fusion algorithms for a pedestrian dead reckoning system. ISPRS International Journal of Geo-Information 2016;5:70.
  • [31] Alam F, ZhaiHe Z, JiaJia H. A Comparative Analysis of Orientation Estimation Filters using MEMS based IMU; 2014.
  • [32] Öhberg F, Bäcklund T, Sundström N, Grip H. Portable Sensors Add Reliable Kinematic Measures to the Assessment of Upper Extremity Function. Sensors 2019;19:1241.
  • [33] Wells D, Alderson J, Camomilla V, Donnelly C, Elliott B, Cereatti A. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study. Journal of sports sciences 2019;37:515–24.
  • [34] Emura S, Tachi S. Sensor fusion based measurement of human head motion. Proceedings of 1994 3rd IEEE International Workshop on Robot and Human Communication; 1994. p. 124–9.
  • [35] Mohan A, Tharion G, Kumar R, Devasahayam S. An instrumented glove for monitoring hand function. Review of Scientific Instruments 2018;89:105001.
  • [36] Biswas D, Ye Z, Mazomenos EB, Jöbges M, Maharatna K. CORDIC Framework for Quaternion-based Joint Angle Computation to Classify Arm Movements. 2018 IEEE International Symposium on Circuits and Systems (ISCAS): IEEE. 2018. pp. 1–5.
  • [37] Tian Y, Li Y, Zhu L, Tan J. Inertial-based real-time human upper limb tracking using twists and exponential maps in free-living environments. 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM): IEEE. 2017. pp. 552–7.
  • [38] Ercan Z, Sezer V, Heceoglu H, Dikilitas C, Gokasan M, Mugan A, Bogosyan S. Multi-sensor data fusion of DCM based orientation estimation for land vehicles. In 2011 IEEE International Conference on Mechatronics.. 2011. pp. 672–7.
  • [39] Dang AT, Nguyen VH. DCM-based orientation estimation using cascade of two adaptive extended Kalman filters. 2013 International Conference on Control, Automation and Information Sciences (ICCAIS). 2013. pp. 152–7.
  • [40] Tadano S, Takeda R, Miyagawa H. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations. Sensors 2013;13:9321–43.
  • [41] Haugen F. The Good Gain method for PI (D) controller tuning. Tech Teach; 2010. p. 1–7.
  • [42] Haugen F. The Good Gain method for simple experimental tuning of PI controllers; 2012.
  • [43] Barraza-Madrigal JA, Cardiel E, Rogeli P, Salas LL, Guerrero RM. Evaluation of suitability of a micro-processing unit of motion analysis for upper limb tracking. Medical engineering & physics 2016;38:793–800.
  • [44] Diefenbach BJ, Lipps DB. Quantifying the three-dimensional joint position sense of the shoulder. Human movement science 2019;67:102508.
  • [45] Glonek G, Wojciechowski A. Hybrid orientation based human limbs motion tracking method. Sensors 2017;17:2857.
  • [46] Blache Y, Begon M. Influence of shoulder kinematic estimate on joint and muscle mechanics predicted by musculoskeletal model. IEEE Transactions on Biomedical Engineering 2017;65:715–22.
  • [47] Suzuki Y, Muraki T, Sekiguchi Y, Ishikawa H, Yaguchi H, Suzuki Y, Izumi SI. Influence of thoracic posture on scapulothoracic and glenohumeral motions during eccentric shoulder external rotation. Gait & posture 2019;67:207–12.
  • [48] Tian Y, Meng X, Tao D, Liu D, Feng C. Upper limb motion tracking with the integration of IMU and Kinect. Neurocomputing 2015;159:207–18.
  • [49] Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Medical engineering & physics 2008;30:123–33.
  • [50] Janota A, Šimák V, Nemec D, Hrbcek J. Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data. Sensors 2015;15:7016–39.
  • [51] Noorkõiv M, Rodgers H, Price CI. Accelerometer measurement of upper extremity movement after stroke: a systematic review of clinical studies. Journal of neuroengineering and rehabilitation 2014;11:144.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73de53cd-12ca-4dbc-9a93-277d70f3bea9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.