Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to the indiscriminate use of limited water sources, the requirement for groundwater evaluation in India expanded substantially. Population growth and unequal distribution, poor irrigation systems, rapid urbanization/industrialization, large-scale deforestation, droughts, and inefficient land use practises contribute to groundwater depletion.As a result, the need for water for agriculture, domestic, and industry soars. The study identifies viable zones in Visakhapatnam’s emerging metropolitan metropolis by utilising the Analytical Hierarchy Process (AHP) approach with remote sensing data in ArcGIS software. Thematic layers were created by taking remote sensing data into consideration (drainage density, soil, lineament density, land use land cover, geomorphology, rainfall, slope, and geology). The method is employed to determine the weights of distinct thematic layers by obtaining the normalised weight from a pairwise matrix.To emphasize the groundwater potential zones and create a map with different zones specified, the weights and ranks extrapolated from the AHP approach have been made available in the weighted index overlay analysis tool in ArcGIS.Groundwater availability and recharge are significantly high in the good zone of the present study’s four classifications of good, moderate, low, and very low. The groundwater status, potential locations for water extraction, and best practises for groundwater recharging may all be determined with the use of the acquired information from the indication map.
Wydawca
Rocznik
Tom
Strony
161--175
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, College of Engineering, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
- Department of Civil Engineering, College of Engineering, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
Bibliografia
- 1. Achu, A. L., Reghunath, R., & Thomas, J. (2020). Mapping of groundwater recharge potential zones and identification of suitable site-specific recharge mechanisms in a tropical river basin. Earth Systems and Environment, 4(1), 131-145.
- 2. Akinlalu, A.A., Adegbuyiro, A., Adiat, K.A.N., Akeredolu, B.E. and Lateef, W.Y., 2017 Application of multi-criteria decision analysis in prediction of groundwater resources potential: A case of Oke-Ana, Ilesa Area Southwestern, Nigeria. J. Astro Geophys, 6, 184 – 200
- 3. Anandagajapathiraju B, Venkateswara Rao P and Subrahmanyam M (2020) Integration of GIS and Remote Sensing in groundwater investigations: A case study from Visakhapatnam district, India. Jou. Ind. Geophy. Uni, 24(5): 50 – 63.
- 4. Ahmed, A. A., & Shabana, A. R. (2020). Integrating of remote sensing, GIS and geophysical data for recharge potentiality evaluation in Wadi El Tarfa, eastern desert, Egypt. Journal of African Earth Sciences, 172, 103957.
- 5. Arulbalaji P, Padmalal D, Sreelash K (2019) GIS and AHP techniques-based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci, Rep 9(1):2082.
- 6. Barik KK, Dalai PC, Goudo SP, et al. (2017) Delineation of groundwater potential zone in Baliguda block of Kandhamal District, Odisha using geospatial technology approach. Int J Adv Remote Sens GIS 6: 2068–2079.
- 7. Bhattacharya S, Das S, Kalashetty M, Warghat SR (2020) An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region. Environ. Dev. Sustain, 1–16.
- 8. Chandra, S., Rao, V. A., Krishnamurthy, N. S., Dutta, S., & Ahmed, S. (2006). Integrated studies for characterization of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeology Journal, 14(5), 767-776.
- 9. Chakraborty B, Roy S, Bera A, Adhikary PP, Bera B, Sengupta D, and Shit P K (2021) Geospatial assessment of groundwater quality for drinking through water quality index and human health risk index in an upland area of Chota Nagpur Plateau of West Bengal, India. Envir. contam , Springer, Cham (pp.327-358).
- 10. Chenini, I., Mammou, A. B., & El May, M. (2010). Groundwater recharge zone mapping using GISbased multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water resources management, 24(5), 921-939.
- 11. Das S (2017) Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Mod.Earth. Syst.Environ, 3(4):1589–1599.
- 12. Elmahdy SI, and Mohamed MM (2015) Groundwater of Abu Dhabi Emirate: a regional assessment by means of remote sensing and geographic information system. Arab. Journ. Geosci, 8(12), 11279-11292.
- 13. El Fakir, R., Mili, E. M., Elkourchia, A., Ammari, Z., Mehdaoui, R., El Khamal, Y., & Said, B. A. Contribution of GIS for the Piezometric Monitoring of the Unconfined Water Table Aquifer of the Fez-Meknes Basin. Ecological Engineering & Environmental Technology, 24(1), 104-115.
- 14. Gandhi FR, and Patel JN (2022) Groundwater potentiality deciphering and sensitivity study using remote sensing technique and fuzzy approach. Jou. Acta Geophy, 70(1), 265-282.
- 15. Ghosh, P. K., Bandyopadhyay, S., & Jana, N. C. (2016). Mapping of groundwater potential zones in hard rock terrain using geoinformatics: a case of Kumari watershed in western part of West Bengal. Modeling Earth Systems and Environment, 2(1), 1-12.
- 16. Harini P, Sahadevan DK, Das IC, Manikyamba C, Durgaprasad M, and Nandan MJ (2018) Regional groundwater assessment of Krishna River basin using integrated GIS approach.Jour.the Ind. Soci. Remsen, 46(9), 1365-1377.
- 17. Hewaidy, A. G. A., El-Motaal, E. A., Sultan, S. A., Ramdan, T. M., & Soliman, S. A. (2015). Groundwater exploration using resistivity and magnetic data at the northwestern part of the Gulf of Suez, Egypt. Egyptian Journal of Petroleum, 24(3), 255-263.
- 18. Ibrahim-Bathis K, Ahmed SA (2016) Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt J Remote Sens Space Sci 19: 223–234.
- 19. Jari, A., El Mostafa Bachaoui, A. J., El Harti, A., Khaddari, A., & El Jazouli, A. (2022). Use of GIS, Remote Sensing and Analytical Hierarchy Process for Groundwater Potential Assessment in an Arid Region–A Case Study. Ecol. Eng, 5, 234-255.
- 20. Jha MK, Chowdhury A, Chowdary VM, and Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Wat. resou.manag, 21(2), 427-467.
- 21. Jha MK, Chowdary VM, Chowdhury A (2010) Groundwater assessment in Salboni Block, West-Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18: 1713–1728.
- 22. Karanam, H., Mahapatra, A., SaranyaSeeram, V., Sontena, P., &Shaik, M. (2014). Delineation of groundwater potential zones in greater Visakhapatnam Municipal Corporation (GVMC) area, Andhra Pradesh, India–A geospatial approach. Int. J. Innov. Sci. Eng. Tech, 1(4), 478-492.
- 23. Kumar R, Jasrotia AS, and Saraf AK (2007) Delineation of groundwater recharge sites using integrated remote sensing and GIS in Jammu district, India.Int.Jou. Remsen, 28(22), 5019-5036.
- 24. Lee S, Hyun Y, and Lee MJ (2019a) Groundwater potential mapping using data mining models data mining models of big data analysis in Goyang-si, South Korea. Sustain,11(6):1678.
- 25. Lee S, Lee CW, and Kim JC (2019b) Groundwater productivity potential mapping using logistic regression and boosted tree models: the case of Okcheon City in Korea. Adv.Remsen. and Geo Infor. App. Springer, Cham, pp 305–307.
- 26. Mohammed, K. S., Elhadary, Y. A. E., &Samat, N. (2016). Identifying potential areas for future urban development using GIS-based multi criteria evaluation technique. In SHS Web of Conferences (Vol. 23, p. 03001). EDP Sciences.
- 27. Mageshkumar P, Subbaiyan A, Lakshmanan E, Thirumoorthy P (2019) Application of geospatial techniques in delineating groundwater po-tential zones: a case study from South India. Arab. Jou. Geosci ,12(5): 151.
- 28. Machiwal D, Rangi N, and Sharma A (2015) Integrated knowledge-and data-driven approaches for groundwater potential zoning using GIS and multicriteria decision making techniques on hard-rock terrain of Ahar catch-ment, Rajasthan, India. Envi. Ear. Sci, 73 (4), 1871–1892.
- 29. Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188, 1–27.
- 30. Nandi, & Shakoor (2009). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses Eng. Geol., 110 (2009), pp. 11–20
- 31. Nigam A, Awasthi MK, and Bunkar N (2020) Assessment of groundwater potential zones of tons basin using spatial data. International Jou.Agr, Environ and Biotech, 13(3), 261-268.
- 32. Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/ remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Jou.of. Hydrol, 525:197–208.
- 33. Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.
- 34. Pinto D, Shreshta S, Bable MS, et al. (2017) Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Applied Water Sci 7: 503–519.
- 35. Pourghasemi, HR, Pradhan, B, & Gokceoglu, C. (2012a). Application of fuzzy logic and analytical hierarchy process (ahp) to landslide susceptibility mapping at haraz watershed, iran. Natural Hazards,63(2), 965– 996.
- 36. doi:10.1007/s11069-012-0217-2
- 37. Rajasekhar M, Gadhiraju SR, Kadam A, and Bhagat V (2020) Identification of groundwater rechargebased potential rainwater harvesting sites for sustainable development of a semiarid region of southern India using geospatial, AHP, and SCS-CN approach. Ara. Jou. Geosci, 13(1), 1-19.
- 38. Roy A, Keesari T, Sinha UK, Sabarathinam C (2019) Delineating groundwater prospect zones in a region with extreme climatic conditions using GIS and remote sensing techniques: A case study from central India. J Earth Syst Sci 128: 201.
- 39. Rao, P. V., Subrahmanyam, M., & Raju, B. A. (2021). Groundwater exploration in hard rock terrains of East Godavari district, Andhra Pradesh, India using AHP and WIO analyses together with geoelectrical surveys. AIMS Geosciences, 7(2), 244-267.
- 40. Saaty TL, Wind Y, (1980). Marketing applications of the analytic hierarchy process. Manag.sci, 26(7), 641-658.
- 41. Saaty TL (1990) An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Manag. sci, 36(3), 259-268.
- 42. Satty TL (2008) Decision making with the analytic hierarchy process. International Jour. Serv. Scien, 1(1), 83-98.
- 43. Saravanan, S. (2012). Identification of artificial recharge sites in a hard rock terrain using remote sensing and GIS. Int J Earth Sci Eng, 5(6), 0974-5904.
- 44. Singh PK, Kumar S, Singh UC (2011) Groundwater resource evaluation in the Gwalior area,India, using satellite data: an integrated geomorphological and geophysical approach. HydrogeolJ19: 1421–1429.
- 45. Singh, S. K., Zeddies, M., Shankar, U., & Griffiths, G. A. (2019). Potential groundwater recharge zones within New Zealand. Geoscience Frontiers, 10(3), 1065-1072.
- 46. Snyder. S, (2019), Water in Crisis - Spotlight India, https://thewaterproject.org/water-crisis/water-in-crisis-india
- 47. Suja Rose RS, Krishnana N (2009) Spatial Analysis of Groundwater Potential using Remote Sensing and GIS in the Kanyakumari and Nambiyar Basins. J Indian Soc Remote Sens 37: 681– 692.
- 48. Subba Rao, N., 2012. Indicators for occurrence of groundwater in the rocks of Eastern Ghats. J. Current Sci., 103(4), 25.
- 49. Taweesin, K., Seeboonruang, U., &Saraphirom, P. (2018). The influence of climate variability effects on groundwater time series in the lower central plains of Thailand. Water, 10(3), 290.
- 50. Thangasamy JR, Chinnadurai D, Gopalakrishnan G, and Nagaiah E (2020) Delineation of potential aquifer zones in gneissic terrain using multielectrode scanning technique—case study in part of Chittar sub-basin, South India.Ara. Jou. Geosci, 13(21), 1-12.
- 51. Tiwari, A., Ahuja, A., Vishwakarma, B. D., & Jain, K. (2019). Groundwater potential zone (GWPZ) for urban development site suitability analysis in Bhopal, India. Journal of the Indian Society of Remote Sensing, 47(11), 1793-1815.
- 52. Todd DK (1980) Groundwater hydrology. 2nd Edn. Geol Magazine, John Wiley, 535
- 53. Waikar ML, and Nilawar AP (2014) Identification of Groundwater Potential Zone using Remote Sensing and GIS Technique. Inter. Jou. Inno. Res. in Sci, Eng and Tech, 3(5), 12163–12174.
- 54. Yilmaz OS (2022) Flood hazard susceptibility areas mapping using Analytical Hierarchical Process (AHP), Frequency Ratio (FR) and AHP-FR ensemble based on Geographic Information Systems (GIS): a case study for Kastamonu, Türkiye.Jou. Acta Geophy, 1-23.
- 55. Yimer F, Messing I, Ledin S, and Abdelkadir A (2008) Effects of different land use types on infiltration capacity in a catchment in the highlands of Ethiopia. Soil use and manag, 24(4), 344-349.
Uwagi
1. Błędna numeracja w bibliografii (poz. 35-36).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73db94f8-79d6-4066-bb20-b931d0712896