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1. INTRODUCTION

This paper deals with null controllability issues for a class of degenerate and singular
parabolic Neumann problems with interior degeneracy and singularity, whose proto-
type is 




ut −Au−
λ

|x− x0|Kb
= fχω (t, x) ∈ QT := (0, T )× (0, 1),

ux(t, 0) = ux(t, 1) = 0 t ∈ (0, T ),
u(0, x) = u0(x) ∈ L2(0, 1) x ∈ (0, 1),

where
Au :=

(
|x− x0|Kaux

)
x

or Au := |x− x0|Kauxx.

Here x0 ∈ (0, 1), the control function f is located in an open set ω compactly contained
in (0, 1) and λ is a real parameter.

Actually, we shall consider more general operators of the form

ut − (a(x)ux)x −
λ

b(x)u,
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where a(x) ∼ |x− x0|Ka and b(x) ∼ |x− x0|Kb are possibly non-smooth functions (for
more comments see [18,19] or [20]).

Related problems have been studied for example in [1–8,13,15–17,21] and in [10]
(for the nonlinear case), when λ = 0. If λ 6= 0, the first null controllability result was
proved in [29] for the non degenerate heat operator with singular potential

ut − uxx − λ
1
xKb

u, (t, x) ∈ QT , (1.1)

under Dirichlet boundary conditions: Carleman estimates (and consequently null
controllability properties) are established when λ ≤ 1/4. On the contrary, if λ > 1/4,
in [9] it is proved that the null controllability for (1.1) fails.

As far as we know, [28] is the first paper where a degenerate diffusion coefficient is
coupled with a singular potential, precisely considering

ut − (xKaux)x − λ
1
xKb

u, (t, x) ∈ QT .

Under suitable conditions on λ and assuming Ka+Kb ≤ 2, but excluding Ka = Kb = 1,
the author establishes Carleman estimates, and so null controllability results. These
results were extended in [12] and in [11] to operators of the form

ut − (a(x)ux)x − λ
1
xKb

u, (t, x) ∈ QT ,

where a(x) ∼ xKa .
We notice that in the previously cited papers the degeneracy and the singularity

occur at the boundary of the domain. However, it seems natural to consider degen-
eracy occurring at an interior point of the space domain. This fact originates some
complications because the boundary conditions do not play any role in controlling
the loss of ellipticity or the singularity in the equation. For these reasons, a related
research has started focusing on interior degenerate coefficients, possibly non smooth:
for instance, see [3, 4, 15, 16, 21] and [27] when λ = 0 and [14, 18–20] and [22] when
λ 6= 0, and the references therein.

In particular, problems strictly related to the one studied in this paper are consid-
ered in [14, 18, 19] and in [20], to which we refer for any further comment and for the
general setting. First of all, let us recall the following possibilities for the degenerate
function a, or similarly, for the singular potential b:

(a) a ∈ W 1,1(0, 1) is said to be weakly degenerate, (WD) for short, if there exists
x0 ∈ (0, 1) such that a(x0) = 0, a > 0 on [0, 1] \ {x0} and there exists Ka ∈ (0, 1)
such that (x− x0)a′ ≤ Kaa a.e. in [0, 1];

(b) a ∈ W 1,∞(0, 1) is said to be strongly degenerate, (SD) for short, if there exists
x0 ∈ (0, 1) such that a(x0) = 0, a > 0 on [0, 1] \ {x0} and there exists Ka ∈ [1, 2)
such that (x− x0)a′ ≤ Kaa a.e. in [0, 1].

Standard examples are a(x) = |x − x0|Ka with 0 < Ka < 2. The restriction
Ka < 2 is related to controllability and existence issues ([16] and [24]) and to certain
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characterizations of the domains of the operators which permit some integrations by
parts ([7] and [21]). For this reasons, from now on, we will only consider coefficients
Ka,Kb < 2.

As already said, related problems have been studied in [14,18,19] and in [20]. In
[14] the problem in non divergence form was considered under Dirichlet or Neumann
boundary conditions; moreover, if a and b were both (SD), the well posedness and the
null controllability were proved only in the case Ka = Kb = 1. In [18] the problem
in divergence form was considered only under Dirichlet boundary conditions and, if
a and b were both (SD), only the well posedness was proved, provided that λ < 0;
indeed, when λ > 0 and small, the controllability was proved for Ka + Kb ≤ 2,
excluding the case Ki = 1, as a consequence of Carleman and observability inequalities:
these estimates were obtained by the Hardy–Poincaré type inequality with interior
degeneracy

1∫

0

u2

b
dx ≤ C

1∫

0

a(u′)2dx,

which follows by the inequality

(1− α)2

4

1∫

0

u2

|x− x0|2−α
dx ≤

1∫

0

|x− x0|α(u′)2dx (1.2)

valid for every α ∈ R and for every u ∈ H. Here

u ∈ H :=
{
u ∈W 1,1

0 (0, 1) :
√
|x− x0|αu′ ∈ L2(0, 1), u√

|x− x0|2−α
∈ L2(0, 1)

}
.

It is clear that inequality (1.2) fails to be interesting precisely for α = 1, in agreement
with the celebrated characterization of Muckenhoupt [25]. Thus, if both a and b are
(SD), in order to obtain the controllability result, one cannot follow the approach used
in [18]. For this reason, in [20], we proceeded in a completely different way, proving
the null controllability also when Ka = Kb = 1, only by using cut–off functions. This
technique was applied also in the non divergence case, thus generalizing the result
given in [14].

The degenerate/singular problem in divergence form with Neumann boundary
conditions appeared in [19]. In this case we couldn’t use (1.2) due to the lack of
Dirichlet conditions, and in the (SSD) case (i.e. both a and b are (SD)) we proved
only the well posedness, provided that λ < 0. Again the null controllability was not
considered in the (SSD) case, and this is what we are going to face here. Hence,
this paper completes the previous works, concluding the description of the evolution
systems 




ut − (a(x)ux)x −
λ

b(x)u = f(t, x)χω(x), (t, x) ∈ QT ,

ux(t, 0) = ux(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1),

(1.3)
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and 



ut − a(x)uxx −
λ

b(x)u = f(t, x)χω(x), (t, x) ∈ QT ,

ux(t, 0) = ux(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1).

(1.4)

when Ka,Kb ≥ 1. In particular, we aim at showing null controllability results for (1.3)
and (1.4), that is: for every u0 ∈ L2(0, 1) there exists f ∈ L2(QT ) such that the related
solution u satisfies u(T, x) = 0 for every x ∈ [0, 1] and ‖f‖2L2(QT ) ≤ C‖u0‖2L2(0,1) for
some universal positive constant C (for (1.4) replacing L2 with L2

1
a
).

A final comment on the notation: by C we shall denote universal positive constants,
which are allowed to vary from line to line.

We remark that the divergence form case will be treated in full details, while for
the non divergence form case we will be more sketchy, since many calculations are
analogous to the former case.

2. WELL POSEDNESS

As just remarked, we focus in (1.3). Let us start introducing the functional setting
from [18]. First of all, define the weighted Hilbert spaces

H1
a(0, 1) :=

{
u ∈W 1,1(0, 1) :

√
au′ ∈ L2(0, 1)

}

and
H := H1

a,b(0, 1) :=
{
u ∈ H1

a(0, 1) : u√
b
∈ L2(0, 1)

}
,

endowed with the inner products

〈u, v〉H1
a(0,1) :=

1∫

0

au′v′dx+
1∫

0

uv dx,

and

〈u, v〉H1
a,b

(0,1) =
1∫

0

au′v′dx+
1∫

0

uv dx+
1∫

0

uv

b
dx,

respectively.
Finally, introduce the Hilbert space

H2
a,b :=

{
u ∈ H1

a(0, 1) : au′ ∈ H1(0, 1), u′(0) = u′(1) = 0 and Au ∈ L2(0, 1)
}
,

where
Au := (au′)′ + λ

b
u with D(A) = H2

a,b(0, 1).
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We recall the following definition:
Definition 2.1. Let u0 ∈ L2(0, 1) and h ∈ L2(0, T ;H∗). A function u is said to be
a (weak) solution of





ut − (a(x)ux)x − λ
b(x)u = h(t, x), (t, x) ∈ QT ,

ux(t, 0) = ux(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1),

(2.1)

if
u ∈ U := L2(0, T ;H) ∩H1([0, T ];H∗)

and it satisfies (2.1) in the sense of H∗-valued distributions.
Notice that any solution belongs to C([0, T ];L2(0, 1)) by [26, Lemma 11.4].
Our fundamental assumption is the following:

(H) a and b are (SD) and λ < 0.
For completeness, we show that D(A) is dense in L2(Ω). Indeed, if

T ∈ D(A)⊥ =
{
T ∈ L2(Ω) :

∫

Ω

Tu dx = 0 for all u ∈ D(A)
}
,

take u ∈ D(A) solution of −Au + u = T (the existence of a unique weak solution
u ∈ H is guaranteed by the Lax-Milgram Theorem and the equation itself implies that
u ∈ D(A)). Then

0 =
∫

Ω

Tu dx =
∫

Ω

[
− (a(x)ux)x u−

λ

b(x)u
2 + u2

]
dx ≥

∫

Ω

u2dx,

so that u = 0, which implies T = 0, and thus D(A) is dense in L2(Ω).
As a particular case of [19, Theorem 2.1], we have the following well-posedness

result.
Theorem 2.2. Assume (H). If u0 ∈ L2(0, 1) and h ∈ L2(0, T ;H∗), there exists
a unique solution of (2.1). Moreover, if u0 ∈ D(A), then

h ∈ L2(QT )⇒ u ∈ H1(0, T ;L2(0, 1)),
h ∈W 1,1(0, T ;L2(0, 1))⇒ u ∈ C1(0, T ;L2(0, 1)) ∩ C([0, T ];D(A)).

3. THE CONTROLLABILITY RESULT

In order to study the controllability property, on the control set ω we assume one of
the following hypothesis:
(O) First item either

ω = (α, β) ⊂ (0, 1) is such that x0 ∈ ω, (3.1)
or

ω = ω1 ∪ ω2, (3.2)
where

ωi = (αi, βi) ⊂ (0, 1), i = 1, 2, and β1 < x0 < α2.
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The main result of this paper is the following.

Theorem 3.1. Assume (H) and (O). Then, given u0 ∈ L2(0, 1), there exists
f ∈ L2(QT ) such that the solution u of (1.3) satisfies

u(T, x) = 0 for every x ∈ [0, 1].

Moreover,
∫

QT

f2dxdt ≤ C
1∫

0

u2
0dx (3.3)

for some universal positive constant C.

The proof of the previous theorem is based on the next result, that will be proved
in the Appendix.

Theorem 3.2. Take A < B in R, a ∈ W 1,∞(A,B), b ∈ C([A,B]) are such that
a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0 for all x ∈ [A,B]. Assume ω ⊂⊂ (A,B) is
an interval. Then, given u0 ∈ L2(A,B), there exists f ∈ L2((0, T )× (A,B)) such that
the solution u of





ut − (a(x)ux)x −
λ

b(x)u = f(t, x)χω(x), (t, x) ∈ (0, T )× (A,B),

u(t, A) = u(t, B) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (A,B),

(3.4)

satisfies u(T, x) = 0 for every x ∈ [A,B]. Moreover,

T∫

0

B∫

A

f2dxdt ≤ C
B∫

A

u2
0dx

for some universal positive constant C.

Clearly, if a and b are strictly positive then the spaces H1
a(0, 1) and H1

a,b(0, 1)
coincide with H1(0, 1), while H2

a,b(0, 1) coincides with H2(0, 1).

Proof of Theorem 3.1. Let v be the solution of (1.3) with right-hand-side hχω and
introduce

ã(x) :=





a(−x), x ∈ [−1, 0],
a(x), x ∈ [0, 1],
a(2− x), x ∈ [1, 2],

b̃(x) :=





b(−x), x ∈ [−1, 0],
b(x), x ∈ [0, 1],
b(2− x), x ∈ [1, 2],

h̃(t, x) :=





h(t,−x), x ∈ [−1, 0],
h(t, x), x ∈ [0, 1],
h(t, 2− x), x ∈ [1, 2],

ũ0(x) :=





u0(−x), x ∈ [−1, 0,
u0(x), x ∈ [0, 1],
u0(2− x), x ∈ [1, 2].
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Now, assume (3.1) and consider 0 < r′ < r̃ < r with (x0 − r, x0 + r) ⊂ ω and take
three cut-off functions φi ∈ C∞([−1, 2]), |φi| ≤ 1, i = 0, 1, 2, with

φ1(x) :=
{

0, x ∈ [−1,−(x0 − r̃)] ∪ [x0 − r̃, 2],
1, x ∈ [−(x0 − r), x0 − r],

φ2(x) :=
{

0, x ∈ [−1, x0 + r̃] ∪ [2− (x0 + r̃), 2],
1, x ∈ [x0 + r, 2− (x0 + r)],

and φ0 = 1− φ1 − φ2. Finally, define

W (t, x) :=





v(t,−x), x ∈ [−1, 0],
v(t, x), x ∈ [0, 1],
v(t, 2− x), x ∈ [1, 2],

(3.5)

and
ω̃ := (−β,−α) ∪ (α, β) ∪ (2− β, 2− α),

so that W satisfies




Wt − (ãWx)x − λ
W

b̃
= h̃χω̃, (t, x) ∈ (0, T )× (−1, 2),

Wx(t,−1) = Wx(t, 2) = 0, t ∈ (0, T ),
W (0, x) = ũ0(x), x ∈ (−1, 2).

(3.6)

Hence, v1 := φ1W and v2 := φ2W satisfy the nondegenerate problems




v1,t − (ãv1,x)x −
λ

b̃
v1 = h̄1χω̃, (t, x) ∈ (0, T )× (−(x0 − r′), x0 − r′),

v1(t,−(x0 − r′)) = v1(t, x0 − r′) = 0, t ∈ (0, T ),
v1,x(t,−(x0 − r′)) = v1,x(t, x0 − r′) = 0, t ∈ (0, T ),
v1(0, x) = φ1(x)ũ0(x), x ∈ (−(x0 − r′), x0 − r′)

and




v2,t − (ãv2,x)x −
λ

b̃
v2 = h̄2χω̃, (t, x) ∈ (0, T )× (x0 + r′, 2− (x0 + r′)),

v2(t, x0 + r′) = v2(t, 2− (x0 + r′)) = 0, t ∈ (0, T ),
v2,x(t, x0 + r′) = v2,x(t, 2− (x0 + r′)) = 0, t ∈ (0, T ),
v2(0, x) = φ2(x)ũ0(x), x ∈ (x0 + r′, 2− (x0 + r′)),

with h̄i := φih̃− (ã(φi)xW )x − ã(φi)xWx, i = 1, 2.
Then, by Theorem 3.2, there exist two control functions h1 ∈ L2((0, T )×

(−(x0−r′), x0−r′)) and h2 ∈ L2((0, T )×(x0 +r′, 2−(x0 +r′))), such that v1(T, x) = 0
for all x ∈ (−(x0− r′), x0− r′) and v2(T, x) = 0 for all x ∈ (x0 + r′, 2− (x0 + r′)) with

T∫

0

x0−r′∫

−(x0−r′)

h2
1dxdt ≤ C

T∫

0

x0−r′∫

−(x0−r′)

ũ2
0dxdt
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and
T∫

0

2−(x0+r′)∫

x0+r′

h2
2dxdt ≤ C

T∫

0

2−(x0+r′)∫

x0+r′

ũ2
0dxdt

for some constant C. In particular h1 ∈ L2((0, T ) × (0, x0 − r′)), h2 ∈ L2((0, T )×
(x0 + r′, 1)), v1(T, x) = 0 for all x ∈ (0, x0 − r′), v2(T, x) = 0 for all x ∈ (x0 + r′, 1)
with

T∫

0

x0−r′∫

0

h2
1dxdt ≤ C

T∫

0

x0−r′∫

−(x0−r′)

ũ2
0dxdt ≤ C

T∫

0

1∫

0

u2
0dxdt (3.7)

and
T∫

0

1∫

x0+r′

h2
2dxdt ≤ C

T∫

0

2−(x0+r′)∫

x0+r′

ũ2
0dxdt ≤ C

T∫

0

1∫

0

u2
0dxdt (3.8)

for some constant C.
Now, let u3 be the solution of





ut − (a(x)ux)x −
λ

b(x)u = 0 (t, x) ∈ (0, T )× (0, 1),

ux(t, 0) = ux(t, 1) = 0, t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 1),

(3.9)

and denote by u1 and f1 (resp. u2 and f2) the trivial extensions of v1 and h1 (resp.
u2 and h2) to [x0 − r′, 1] (resp. [0, x0 + r′]), so that all functions are defined in the
interval [0, 1]. Finally, take

u(t, x) = u1(t, x) + u2(t, x) + T − t
T

φ0(x)u3(t, x).

Then, u(T, x) = 0 for all x ∈ [0, 1] and u satisfies problem (1.3) in the domain QT
with

f = f1χω + f2χω −
1
T
φ0u3 − φ′0

T − t
T

au3,x −
(
φ′0
T − t
T

au3

)

x

.

Since a belongs to W 1,∞(0, 1), one has that f ∈ L2(QT ), as required. Moreover, it is
easy to see that the support of f is contained in ω.

Now, we prove (3.3) proceeding as in [20]. To this aim, consider the equation
satisfied by u3 and multiply it by u3. Then, integrating over (0, 1), we have

1
2
d

dt
‖u3(t)‖2L2(0,1) + ‖√au3,x(t)‖2L2(0,1) − λ

∥∥∥∥
u3√
b

∥∥∥∥
2

L2(0,1)
≤ 0.

Using the fact that λ < 0, we get

d

dt
‖u3(t)‖2L2(0,1) ≤

d

dt
‖u3(t)‖2L2(0,1) + 2‖√au3,x(t)‖2L2(0,1) ≤ 0.
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Thus, the function t 7→ ‖u3(t)‖2L2(0,1) is decreasing. This implies that

‖u3(t)‖2L2(0,1) ≤ ‖u0‖2L2(0,1) for all t ∈ [0, T ]

and so
‖u3‖2L2(QT ) ≤ C‖u0‖2L2(0,1). (3.10)

Now, integrating over (0, T ) the inequality

d

dt
‖u3(t)‖2L2(0,1)) + 2‖√au3,x(t)‖2L2(0,1) ≤ 0,

we immediately find
‖√au3,x‖2L2(QT ) ≤ C‖u0‖2L2(QT ) (3.11)

for some C > 0.
Now, let us note that, since a ∈W 1,∞(0, 1), then

‖(au3)x‖L2(QT ) ≤ C
(
‖u3‖L2((QT ) + ‖√au3,x‖L2(QT )

)
.

By using (3.10) and (3.11) in the previous inequality, we get

‖(au3)x‖L2(QT ) ≤ ‖u0‖2L2(QT ) (3.12)

for some C > 0.
In conclusion, by (3.10), (3.11), (3.12), from the definition of f and by (3.7) and

(3.8), inequality (3.3) follows immediately.
Now, assume (3.2). Take r > 0 such that β1 < x0 − r and x0 + r < α2. As before,

take three cut-off functions ϕi ∈ C∞([−1, 2]), |ϕi| ≤ 1, i = 0, 1, 2, with

ϕ1(x) :=
{

0, x ∈ [−1,−β1] ∪ [β1, 2],
1, x ∈ [−α1, α1],

ϕ2(x) :=
{

0, x ∈ [−1, α2] ∪ [2− α2, 2],
1, x ∈ [β2, 2− β2],

and ϕ0 = 1− ϕ1 − ϕ2. Defining W as in (3.5), we have that W satisfies (3.6) with

ω̃ := (−β2,−α2) ∪ (−β1,−α1) ∪ ω ∪ (2− β2, 2− α2) ∪ (2− β1, 2− α1).

Setting v4 := ϕ1W and v5 := ϕ2W , one has that v4 and v5 satisfy the nondegenerate
problems




v4,t − (ãv4,x)x −
λ

b̃
v4 = h̄4χ(−β1,−α1)∪(α1,β1), (t, x) ∈ (0, T )× (−(x0 − r), x0 − r),

v4(t,−(x0 − r)) = v4(t, x0 − r) = 0, t ∈ (0, T ),
v4,x(t,−(x0 − r)) = v4,x(t, x0 − r) = 0, t ∈ (0, T ),
v4(0, x) = ϕ1(x)ũ0(x), x ∈ (−(x0 − r), x0 − r)
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and





v5,t−(ãv5,x)x−
λ

b̃
v5 = h̄5χ(α2,β2)∪(2−β2,2−α2), (t, x) ∈ (0, T )×(x0 + r, 2−(x0+r)),

v5(t, x0 + r) = v5(t, 2− (x0 + r)) = 0, t ∈ (0, T ),
v5,x(t, x0 + r) = v5,x(t, 2− (x0 + r)) = 0, t ∈ (0, T ),
v5(0, x) = ϕ2(x)ũ0(x), x ∈ (x0 + r, 2− (x0 + r))

with h̄i := ϕi−3h̃ − (ã(ϕi−3)xW )x − ã(ϕi−3)xWx, i = 4, 5. Again, by Theorem 3.2,
there exist two control functions h4 ∈ L2((0, T ) × (−(x0 − r), x0 − r)) and h5 ∈
L2((0, T )× (x0 + r, 2− (x0 + r))), such that v4(T, x) = 0 for all x ∈ (−(x0− r), x0− r)
and v5(T, x) = 0 for all x ∈ (x0 + r, 2− (x0 + r)) with

T∫

0

x0−r∫

−(x0−r)

h2
4dxdt ≤ C

T∫

0

x0−r∫

−(x0−r)

ũ2
0dxdt

and

T∫

0

2−(x0+r)∫

x0+r

h2
5dxdt ≤ C

T∫

0

2−(x0+r)∫

x0+r

ũ2
0dxdt

for some constant C. In particular h4 ∈ L2((0, T ) × (0, x0 − r)), h5 ∈ L2((0, T )×
(x0 + r, 1)), v4(T, x) = 0 for all x ∈ (0, x0 − r), v5(T, x) = 0 for all x ∈ (x0 + r, 1) with

T∫

0

x0−r∫

0

h2
4dxdt ≤ C

T∫

0

x0−r∫

−(x0−r)

ũ2
0dxdt ≤ C

T∫

0

1∫

0

u2
0dxdt

and

T∫

0

1∫

x0+r

h2
5dxdt ≤ C

T∫

0

2−(x0+r)∫

x0+r

ũ2
0dxdt ≤ C

T∫

0

1∫

0

u2
0dxdt

for some constant C.
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As before, let u4 and f4, u5 and f5 be the trivial extensions of v4 and h4, v5 and
h5 in [x0− r, 1] and [0, x0 + r], respectively, considered in the interval [0, 1]. Finally, set

u(t, x) = u4(t, x) + u5(t, x) + T − t
T

ϕ0(x)u3(t, x),

where u3 is the solution of (3.9). As before, u(T, x) = 0 for all x ∈ [0, 1] and u satisfies
problem (1.3) in the domain QT with

f = f4χ(α1,β1) + f5χ(α2,β2) −
1
T
ϕ0u3 − ϕ′0

T − t
T

au3,x −
(
ϕ′0
T − t
T

au3

)

x

.

Again f ∈ L2(QT ), as required and the support of f is contained in ω. In order to
conclude we have to prove (3.3) for the control function f , but such an estimate can
be obtained as above, thus concluding the proof.

Remark 3.3. We strongly remark that if a is (WD), the previous approach does not
work. Indeed, the function f found in the previous proof is not in L2(QT

)
, since a is

only of class W 1,1(0, 1).

Remark 3.4. If a is (SD) and b is (WD) the technique above, and so the controllability
result, still works provided that there exists a solution of (1.3), for example if λ < 1/C∗
and Ka + Kb ≤ 2 (see [19, Theorem 3.2]) (observe that in this case Theorem 3.2
still holds true). Thus, we re–obtain the controllability result in [19]. However, we
observe that in [19] in order to prove the controllability result we required the following
additional assumptions:

1. if Ka >
4
3 , then there exists a constant θ ∈ (0,Ka] such that

x 7→ a(x)
|x− x0|θ

{
is non increasing on the left of x = x0,
is non decreasing on the right of x = x0;

(3.13)

2. if Ka >
3
2 the function in (3.13) is bounded below away from 0 and there exists

a constant Σ > 0 such that

|a′(x)| ≤ Σ|x− x0|2θ−3 for a.e. x ∈ [0, 1];

3. if λ < 0 we assume that (x− x0)b′(x) ≥ 0 in [0, 1].

Hence, Theorem 3.1 improves the result of [19].

3.1. THE NON DIVERGENCE CASE

The null controllability for the problem in non divergence form (1.4) was studied
in [14] (see also [17, Hypotheses 4.2 and 5.2]) requiring additional assumptions: for
example, (x− x0)b′(x) ≥ 0 in [0, 1] when λ < 0, as recalled in Remark 3.4. However,
using the technique used in the proof of Theorem 3.1, in order to prove the global
controllability result, one has to require only the conditions for the existence theorem
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(see [14, Hypothesis 3.1]) and for the analogous of Theorem 3.2 in the non divergence
case. Indeed, proceeding as in the proof of Theorem 3.1 but with problems written in
non divergence form, the control function f for (1.4) is given by

f = f1χω + f2χω −
1
T
φ0u3 − φ′0

T − t
T

au3,x − a
T − t
T

(φ′0u3)x ,

if ω satisfies (3.1) or

f = f4χ(α1,β1) + f5χ(α2,β2) −
1
T
ϕ0u3 − ϕ′0

T − t
T

au3,x − a
T − t
T

(ϕ′0u3)x ,

if ω satisfies (3.2). In every case f belongs to the L2
1
a

(QT ) as required (for the definition
of the space see, e.g., [14]). Hence, the next theorem holds.

Theorem 3.5. Assume a ∈ W 1,∞(0, 1) and (O). Then, given u0 ∈ L2
1
a
(0, 1), there

exists f ∈ L2
1
a

(QT ) such that the solution u of (1.4) (if there exists) satisfies

u(T, x) = 0 for every x ∈ [0, 1].

Moreover,
∫

QT

f2

a
dxdt ≤ C

1∫

0

u2
0
a
dx,

for some universal positive constant C.

We remark that the previous theorem generalizes the result given in [14] in the
sense that here we prove the controllability result under weaker assumptions. This is
due to the fact that in [14] the controllability result is proved via Carleman estimates
and observability inequality, while here we use only cut off functions. Of course, since
here we do not make any assumption guaranteeing the well posedness, we can refer to
[14, Hypothesis 3.1] for some sufficient conditions.

Observe that the proof of Theorem 3.5 is based on the analogous of Theorem 3.2 for
the problem in non divergence form, whose proof is similar to that of Theorem 3.2 and
is based on the nondegenerate nonsingular Carleman estimate in non divergence form
proved in [14, Proposition 4.1]).

4. APPENDIX: PROOF OF THEOREM 3.2

In this section we will prove, for the reader’s convenience, Theorem 3.2. The
proof is standard: it is based on the equivalence between the null controllability
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for the non degenerate problem (3.4) and the observability inequality (4.7) below for
the associated adjoint problem





vt + (a(x)vx)x + λ

b(x)v = 0, (t, x) ∈ (0, T )× (A,B),

v(t, A) = v(t, B) = 0, t ∈ (0, T ),
v(T, x) = vT (x) ∈ L2(A,B).

(4.1)

In order to prove the observability inequality for the solution v of (4.1), the Carleman
estimate proved in [18, Proposition 4.8] is crucial:

Proposition 4.1 (Nondegenerate nonsingular Carleman estimate). Let z be the
solution of

{
zt + (azx)x + λ

z

b
= h ∈ L2((0, T )× (A,B)

)
,

z(t, A) = z(t, B) = 0, t ∈ (0, T ),

where b ∈ C
(
[A,B]

)
is such that b ≥ b0 > 0 in [A,B] and a ∈ W 1,∞(A,B) is such

that a ≥ a0 > 0 in (A,B). Then, for all λ ∈ R, there exist three positive constants C,
r and s0 such that for any s > s0

T∫

0

B∫

A

(
sΘ(zx)2 + s3Θ3z2) e2sΦdxdt ≤ C




T∫

0

B∫

A

h2e2sΦdxdt− (B.T.)


 ,

where

(B.T.) = sr

T∫

0

[
ae2sΦΘerζ(zx)2]x=B

x=A dt.

Here the function Φ is defined as Φ(t, x) := Θ(t)ρ(x), where Θ(t) := 1
[t(T − t)]4 ,

ρ(x) := erζ(x) − c

and

ζ(x) = d

B∫

x

1
a(t)dt.

Here d = ‖a′‖L∞(A,B) and c > 0 is chosen in such a way that max
[A,B]

ρ < 0.

For completeness, we recall that the previous result is in the lines of the Carleman
estimates in the Lipschitz case proved in [23].
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Moreover, we will also need the following Caccioppoli–type inequality.

Lemma 4.2 (Caccioppoli’s inequality). Assume that the Hypotheses of Proposition 4.1
hold. Let ω′ and ω be two open subintervals of (A,B) such that ω′ ⊂⊂ ω ⊂⊂ (A,B).
Then, there exist two positive constants C and s0 such that every solution v of (4.1)
satisfies

T∫

0

∫

ω′

(vx)2e2sΦdxdt ≤ C

T∫

0

∫

ω

v2dxdt,

for all s ≥ s0.

The proof of the previous inequality is similar to the one in [18], but actually easier
since in this case the problem is non degenerate, so we omit it.

Thanks to the previous estimates we can prove a Carleman estimate for the
solutions of (4.1).

Lemma 4.3. Assume that a and b are as in the previous Proposition and let
ω ⊂⊂ (A,B) be an open interval. Then there exist two positive constants C and
s0 such that every solution v of (4.1) satisfies, for all s ≥ s0,

T∫

0

B∫

A

(
sΘ(vx)2 + s3Θ3v2) e2sΦdxdt ≤ C

T∫

0

∫

ω

v2dxdt.

Proof. Let ω = (α, β) and consider a smooth cut-off function ξ : [A,B]→ [0, 1], such
that {

ξ(x) = 1, x ∈ (α2, β1),
ξ(x) = 0, x ∈ (A,α1) ∪ (β2, B),

where α < α1 < α2 < β1 < β2 < β. We define w := ξv, where v is the solution of (4.1).
Then w satisfies




wt + (a(x)wx)x + λ

b(x)w = f(x), (t, x) ∈ (0, T )× (A,B),

w(t, A) = w(t, B) = 0, t ∈ (0, T ),
(4.2)

with f(x) := (aξxv)x + ξxavx. Therefore, applying Proposition 4.1, using that
wx(t, A) = wx(t, B) = 0, we have

T∫

0

B∫

A

(
sΘ(wx)2 + s3Θ3w2) e2sΦdxdt ≤ C

T∫

0

B∫

A

f2e2sΦdxdt. (4.3)

Then, using the definition of ξ and in particular the fact that ξx and ξxx are supported
in ω′ := (α1, β2), we can write

f2 = ((aξxv)x + aξxvx)2 ≤ C(v2 + (vx)2)χω′ .
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Hence, by (4.3) and Lemma 4.2 we obtain
T∫

0

β1∫

α2

(
sΘ(vx)2 + s3Θ3v2) e2sΦdxdt =

T∫

0

β1∫

α2

(
sΘ(wx)2 + s3Θ3w2) e2sΦdxdt

≤
T∫

0

B∫

A

(
sΘ(wx)2 + s3Θ3w2) e2sΦdxdt ≤ C

T∫

0

∫

ω

v2dxdt.

(4.4)

Now, we consider a smooth function τ : [A,B]→ [0, 1] such that

τ(x) =
{

0 x ∈ [A,α2],
1 x ∈ [β1, B].

Set z := τv, so that z satisfies (4.2), with f := (aτxv)x + aτxvx. Since f is supported
in ω̃ := [α2, β1], by Proposition 4.1 and Lemma 4.2 we get

T∫

0

B∫

β1

(
sΘ(vx)2 + s3Θ3v2) e2sΦdxdt =

T∫

0

B∫

β1

(
sΘ(zx)2 + s3Θ3z2) e2sΦdxdt

≤
T∫

0

B∫

A

(
sΘ(zx)2e2sΦ + s3Θ3z2e2sΦ

)
dxd ≤ C

T∫

0

B∫

A

e2sΦf2dxdt

≤ C
T∫

0

∫

ω̃

(
v2 + (vx)2

)
e2sΦdxdt ≤ C

T∫

0

∫

ω

v2dxdt.

(4.5)

Note that the boundary term in Proposition 4.1 is negative, and thus it is neglected.
To complete the proof it is sufficient to prove a similar inequality on the interval
[A,α2]. Working as just done, the boundary term would have a positive sign, and so
we perform a reflection procedure as in [16], introducing the functions

W (t, x) :=
{
v(t, x), x ∈ [A,B],
−v(t, 2A− x), x ∈ [2A−B,A],

ã(x) :=
{
a(x), x ∈ [A,B],
a(2A− x), x ∈ [2A−B,A]

and

b̃(x) :=
{
b(x), x ∈ [A,B],
b(2A− x), x ∈ [2A−B,A].

Then W satisfies



Wt + (ãWx)x + λ

b̃(x)
W = 0, (t, x) ∈ (0, T )× (2A−B,B),

W (t, 2A−B) = W (t, B) = 0, t ∈ (0, T ).



222 Genni Fragnelli and Dimitri Mugnai

Now, take a smooth function ρ : [2A−B,B]→ [0, 1] such that

ρ(x) =
{

0, x ∈ [2A−B, 2A− β1] ∪ [β1, B],
1, x ∈ [2A− α2, α2]

and set Z = ρW . Then Z solves



Zt + (ãZx)x + λ

b̃(x)
Z = h̄, (t, x) ∈ (0, T )× (2A−B,B),

Z(t, 2A−B) = Z(t, B) = 0, t ∈ (0, T ),

with h̄ = (ãρxW )x + ãρxWx, supported in [2A− β1, 2A− α2] ∪ [α2, β1].
Set Φ̃ := Θ(t)ρ̃(x), with

ρ̃(x) := erζ̃(x) − c

and

ζ̃(x) = d

B∫

x

1
ã(t)dt with x ∈ [2A−B,B],

apply Proposition 4.1 in [2A−B,B] and Lemma 4.2 and find
T∫

0

α2∫

A

[
sΘ(vx)2e2sΦ + s3Θ3v2e2sΦ] dxdt

=
T∫

0

α2∫

A

[
sΘ(Zx)2e2sΦ + s3Θ3Z2e2sΦ] dxdt

=
T∫

0

α2∫

A

[
sΘ(Zx)2e2sΦ̃ + s3Θ3Z2e2sΦ̃

]
dxdt

≤
T∫

0

B∫

2A−B

[
sΘ(Zx)2e2sΦ̃ + s3Θ3Z2e2sΦ̃

]
dxdt ≤ C

T∫

0

∫

ω

v2dxdt.

(4.6)

Thus, by (4.4), (4.5) and (4.6), the thesis follows.

Using Lemma 4.3 and proceeding as in [18, Lemma 4.9], we will deduce the following
observability inequality:
Proposition 4.4. Take A < B in R and let a, b ∈ W 1,∞(A,B) be such that a(x) ≥
a0 > 0 and b(x) ≥ b0 > 0 for all x ∈ [A,B]. Let ω ⊂⊂ (A,B) be an open interval. Then
there exists a positive constant CT such that every solution v ∈ C([0, T ];L2(A,B)) ∩
L2(0, T ;H1(A,B)) of (4.1) satisfies

B∫

A

v2(0, x)dx ≤ CT
T∫

0

∫

ω

v2(t, x)dxdt. (4.7)
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Hence Theorem 3.2 follows in a standard way.

Remark 4.5. Lemma 4.3 and Proposition 4.4 still hold true if ω = ω1 ∪ ω2, where
ωi = (λi, γi) ⊂⊂ (A,B), i = 1, 2, γ1 < λ2. Indeed, in the proof of Lemma 4.3 under
this assumption it is enough to proceed as before taking αi, βi, i = 1, 2 such that
λ1 < α1 < α2 < γ1 and λ2 < β1 < β2 < γ2, ξ as before,

τ(x) =
{

0, x ∈ [A,α1],
1, x ∈ [α2, B]

and

ρ(x) =
{

0, x ∈ [2A−B, 2A− β2] ∪ [β2, B],
1, x ∈ [2A− β1, β1].

As a consequence, Theorem 3.2 still holds true if ω = ω1 ∪ ω2.
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