PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Surface Topography of Fractures Caused by Static and Impact Bending of Polypropylene and Polyamide PA6 Reinforced with Continuous Glass Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work analyzes the fracture topography of composite specimens subjected to three-point bending - static and impact. Scanning electron microscopy was used for this purpose. The tests were performed for two different materials - polypropylene and polyamide PA6, each reinforced with unidirectional glass fibers. In one case, the fibers were distributed evenly, and in the other, there were areas more and less reinforced with fibers. It was observed that in all cases the tension and compression parts could be clearly distinguished. However, for different materials and with different methods of destruction, different failure mechanisms were observed, noted based on the analysis of the fracture topography. It was observed that regardless of the loading method and material, in the tensile part there were visibly protruding fibers, and in the compressed part it was the matrix, not the fibers, that was destroyed. In the case of statically loaded samples, damage occurred at the macrostructural level, and in the case of dynamically loaded samples, at the microstructural level. Additionally, samples with uneven fiber distribution were more susceptible to delamination.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering, Opole University of Technology, ul. St. Mikołajczyka 5, Opole, Poland
  • Faculty of Mechanical Engineering, Opole University of Technology, ul. St. Mikołajczyka 5, Opole, Poland
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, ul. I. Łukasiewicza 5, Wrocław, Poland
Bibliografia
  • 1. Clyne T.W., Hull D., An Introduction to Composite Materials Third Edition, Cambridge University Press.
  • 2. Zhao S., Cheng L., Guo Y., Zheng Y., Li B. PA6 and Kevlar fiber reinforced isotactic polypropylene: Structure, mechanical properties and crystallization and melting behavior, Materials Design 2012; 35: 749–753.
  • 3. Akca E., Gursel A. A review on the Matrix Toughness of Thermoplastic Materials; Periodicals ofengineering and natural sciences 2015; 3(2): 1–8.
  • 4. Ma Y., Yang Y., Sugahara T., Hamada H. A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Compos Part B: Engineering 2016; 99: 162–72.
  • 5. Tanaka K., Katayama T., Uno K. Eco-efficient manufacturing process for fibre reinforced thermoplastic; High Performance Structures and Materials IV 2008; 97: 203–210.
  • 6. La Mantia F.P., Curto D., Scaffaro R. Recycling of dry and wet polyamide 6; Journal of Applied Polymer Science 2002; 86: 1899–1903.
  • 7. Sinha R. Outlines of Polymer Technology; New Delhi; Prentice-Hall by India Private Limited, 2002.
  • 8. Zhao S.F., Qiu S.C., Zheng Y.Y., Cheng L., Guo Y. Synthesis and characterization of kaolin with polystyrene via in-situ polymerization and their application on polypropylene, Materials & Design 2011, 32(2): 957–963.
  • 9. Cabpbell F.C. Structural Composite Materials; ASM International Materials Park Ohio, 2010.
  • 10. Sinha P.K. Composite materials and Structures; Composite Centre of Excellence AR&DB, Department of Aerospace Engineering 2006.
  • 11. Seong D.G., Kang C., Pak S.Y., Kim C.H., Song Y.S. Influence of fiber length and its distribution in three phase poly(propylene) composites, Compos. B Eng. 2019; 168: 218–225.
  • 12. Thomason J.L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene. 6. The properties of injection moulded long fibre PP at high fibre content. Compos Appl Sci Manuf 2005; 36(7): 995–1003.
  • 13. Visweswaraiah S.B, Selezneva M., Lessard L., Hubert P. Mechanical characterisation and modeling of randomly oriented strand architecture and their hybrids–A general review. J Reinforc Plast Compos 2018; 37(8): 548–80.
  • 14. Kaddour A.S., Hinton M.J. Input data for test cases used in benchmarking triaxial failure theories of composites; Journal of Composite Materials 2012; 46(19–20): 2595–2634.
  • 15. Zimniewska M., Wladyka-Przybylak M., Mankowski J. Cellulosic Bast Fibers, Their Structure and Properties Suitable for Composite Applications; W: Cellulose fibers, bio-, and nano- polymer composites; Springer, Germany 2011; 97–119.
  • 16. Chen X., Ai Y., Wu Q., Cheng S., Wie Y., Potential use of nano calcium carbonate in polypropylene fiber reinforced recycled aggregate concrete: Microstructures and properties evaluation, Construction and Building Materials 2023; 400: 132871.
  • 17. Du B., Li Z., Bai H., Qian L., Zheng C., Liu J., Qiu F., Fan Z., Hu H., Chen L. Mechanical property of long glass fiber reinforced polypropylene composite: from material to car seat frame and bumper beam. Polymers 2022; 14(9): 1814.
  • 18. Cui J., Wang S., Wang S., Li G., Wang P., Liang C. The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites. Polymers 2019; 11(12).
  • 19. Bondy M., Mohammadkhani P., Magliaro J., Altenhof W. Elevated strain rate characterization of compression molded direct/in-line compounded carbon fibre/polyamide 66 long fibre thermoplastic. Materials 2022; 15(21): 7667.
  • 20. Wang K-H., Chen Y-T., Hwang S-J., Huang C-T., Peng H-S. Influence of back pressure and geometry on microstructure of injection-molded long-glass-fiber-reinforced polypropylene ribbed plates, Polymer Testing 2022; 116: 107797.
  • 21. Güllü A., Ozdemir A., Ozdemir E. Experimental investigation of the effect of glass fibres on ohe mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics, Mater. Des. 2006; 27(4): 316–323.
  • 22. Łagoda K., Kurek A., Łagoda T., Błażejewski W., Osiecki T., Kroll L. Cracking of thick-walled fiber composites during bending tests, Theoretical and Applied Fracture Mechanics 2019; 101: 46–52.
  • 23. Vantadori S., Carpinteri A., Głowacka K., Fabrizo G., Osiecki T., Ronchei C., Zanichelli A. Fracture toughness characterisation of a glass fibre-reinforced plastic composite, Fatigue and Fracture of Engineering Materials and Structures 2021; 44(1): 3–13.
  • 24. Głowacka K., Kurek A., Smolnicki T., Łagoda T., Osiecki T., Kroll L. Change in elastic modulus during fatigue bending and torsion of a polymer reinforced with continuous glass fibers, Engineering Failure Analysis 2022; 138: 106341.
  • 25. Głowacka K., Łagoda T. Application of multiaxial fatigue criterion in critical plane to determine life-time of composite laminates, Engineering Fracture Mechanics, 2023; 292: 109644.
  • 26. Oulidi O., Nakkabi A., ElaraajI., Fahim M., Moualij N. Incorporation of olive pomace as a natural filler in to the PA6 matrix: Effect on the structure and thermal properties of synthetic Polyamide 6, Chemical Engineering Journal Advances 2022; 12: 100399.
  • 27. Gong L., Yu X., Liang Y., Gong X., Du Q. Multiscale deterioration and microstructure of polypropylene fiber concrete by salt freezing, Case Studies in Construction Materials 2023; 18.
  • 28. Zhou W., Mo J., Xiang S., Zeng L. Impact of elevated temperatures on the mechanical properties and microstructure of waste rubber powder modified polypropylene fiber reinforced concrete, Construction and Building Materials 2023; 392: 131982.
  • 29. Sadabadi H., Ghasemi M. Effects of some injection molding process parameters on fiber orientation tensor of short glass fiber polystyrene composites (SGF/PS), J. Reinforc. Plast. Compos. 2007; (17)26: 1729–1741.
  • 30. Li J., Cao S., Yilmaz E. Analyzing the microstructure of cemented fills adding polypropylene-glass fibers with X-ray micro-computed tomography- Hournal of materials research and technology 2023; 27: 2627–2640.
  • 31. Mohammadkhani P., Magliaro J., Rahimidehgolan F., Khapra T., Altenhof W., Moisture influence on anisotropic mechanical behavior of direct compounded compression molded PA6/Glass LFTs, Composites Part B 2023; 264: 110927.
  • 32. Chen J., Du K., Chen X., Li Y., Huang J., Wu Y., Yang C., Xia X. Influence of surface microstructure on bonding strength of modified polypropylene/ aluminum alloy direct adhesion, Applied Surface Science 2019; 489: 392–402.
  • 33. Ning H., Lu N., Hassen A.A., Chawla K., Selim M., Pillay S. A review of long fibre thermoplastic (LFT) composites. Int Mater Rev 2020; 65(3): 164–88.
  • 34. McLeod M., Baril ´E, H´etu J.F., Deaville T., Bureau M.N. Morphological and mechanical comparision of injection and compression moulding in-line compounding of direct long fibre thermoplastics 2010; 1–10.
  • 35. Osiecki T., Gerstenberger C., Hackert A., Timmel T., Kroll L. High-performance fiber reinforced polymer/metal-hybrids for structural lightweight design; Key Engineering Materials 2017; 744: 311–316.
  • 36. Smolnicki M., Duda Sz., Stabla P., Osiecki T. Mechanical investigation on interlaminar behaviour of inverse FML using acoustic emission and finite element method, Composite Structures 2022; 294: 115810.
  • 37. Smolnicki M., Duda Sz., Stabla P., Osiecki T. Mechanical investigation of inverse FML under mode II loading using acoustic emission and finite element method, Composite Structures 2023; 313: 116943.
  • 38. Zopp C., Nestler D., Buschner N., Mende C., Mauersberger S., Troltzsch J., Nendel S., Nendel W., KrollL., Gehde M. Influence of the cooling behaviour on mechanical properties of carbon fibre-reinforced thermoplastic/metal laminates; Technologies for Light-weight Structures 1(2), Special issue: 3rd International MERGE Technologies Conference 2017; 32–42.
  • 39. Souza B.R., Di Benedetto R.M., Hirayama D., Raponi O., Barbosa C.M., Ancelotti A. C. Jr. Manufacturing and Characterization of Jute/PP Thermoplastic Commingled Composite; Materials Research 2017; 20(2): 458–465.
  • 40. Kabiri A., Liaghat G., Alavi F., Saidpour H., Hedayati S.K., Ansari M., Chizari M. Glass fiber/ polypropylene composites with potential of bone fracture fixation plates: manufacturing process and mechanical characterization; Journal of Composite Materials 2020; 54(30): 4903–4919.
  • 41. Bersee H.E.N., Beukers A. Consolidation of thermoplastic composites; Journal of Thermoplastic Composite Materials 2003; 16(5): 433–455.
  • 42. Standard ISO 14125:1998 Fibre-reinforced plastic composites. Determination of flexural properties.
  • 43. Standard ISO 179-1:2010 Plastics. Determination of Charpy impact properties. Part 1: Non-instrumented impact test.
  • 44. Głowacka K. Małecka J. Wpływ statycznej i udarowej próby zginania trójpunktowego na zmiany strukturalne polimerowego kompozytu włóknistego; W: Zmęczenie materiału w eksploatacji maszyn roboczych Część II; Politechnika Opolska; Opole 2020; 17–24 (In Polish).
  • 45. Takahashi K., Yaginuma K., Goto T., Yokozeki T., Okada T, Takahashi T. Electrically conductive carbon fiber reinforced plastics induced by uneven distribution of polyaniline composite micron-sized particles in thermosetting matrix, Composite Science and Technology 2022; 228: 109642.
  • 46. Landis C.M., McMeeking R.M. Stress concentra- tions in composites with interface sliding, matrix stifness and uneven fiber spacing using shear lag theory, International Journal of Solids and Structures 1999; 36: 4333–4361.
  • 47. Cho C., Choi E.Y., Beom H.G., Kim C.B., Microfrictional dissipation in fiber-reinforced ceramic matrix composites and interfacial shear estimation with a consideration of uneven fiber packing, Journal of Materials Processing Technology 2005; 162–163: 9–14.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73da2070-58de-4d23-9594-a9ce5237f318
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.