PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of spectral method for fatigue life assessment for non-gaussian random loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The well-known problem with the fatigue lifetime assessment of non-Gaussian loading signals with the use of spectral method has been presented in the paper. A correction factors that transform the non-Gaussian signal into an equivalent Gaussian signal proposed by Bracessi et al. (2009) has been used for the purpose of lifetime calculations together with Palmgren-Miner Hypothesis. The calculations have been performed for the 10HNAP steel under random non-Gaussian load with four dominating frequencies. The signal has been generated on the test stand SHM250 for random tension-compression tests. The results with zero and non-zero mean stresses have been used to calculate the fatigue life with the frequency domain method based on Dirlik’s model and with a time domain method with the use of the rainflow cycle counting algorithm. The obtained calculation results have been compared with experimental results.
Rocznik
Strony
100--103
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Department of Engineering, University of Perugia, via G. Duranti, 93, Perugia, 06125 Italy
Bibliografia
  • 1. Banvillet A., Łagoda T. , Macha E., Niesłony A., Palin-Luc T., Vittori J.-F. (2004), Fatigue life under non-Gaussian random loading from various Models, International Journal of Fatigue, 26, 349–363.
  • 2. Benasciutti D., Cristofori A.,Tovo R. (2013) Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation, Probabilistic Engineering Mechanics, 31, 39–45.
  • 3. Benasciutti D., Tovo R. (2005), Spectral methods for lifetime prediction under wide-band stationary random processes, International Journal of Fatigue, 27 867–877.
  • 4. Benasciutti D., Tovo R. (2006) Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes, Probabilistic Engineering Mechanics, 21(4), 287–299.
  • 5. Benasciutti D., Tovo R. (2010) On fatigue cycle distribution in nonstationary switching loadings with Markov chain structure, Probabilistic Engineering Mechanics, 25(4), 406-418.
  • 6. Bendat J.S. (1964)., M.A. Corporation, U.S.N.A. and S. Administration, Probability functions for random responses: prediction for peaks, fatigue damage, and catastrophic failures, National Aeronautics and Space Administration.
  • 7. Braccesi C., Cianetti F., Lori G., Pioli D. (2009), The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress, International Journal of Fatigue, 31(4), 766–775.
  • 8. Chaudhury G., Dover W. (1985), Fatigue analysis of offshore platforms subject to sea wave loadings, International Journal of Fatigue, 7, 13–19.
  • 9. Dirlik T. (1985), Application of computers in fatigue analysis, phd thesis, University of Warwick.
  • 10. Hancock J., D. Gall (1985), Fatigue under narrow and broad band stationary loading, Marine Technology Directorate Ltd.
  • 11. Łagoda T., Macha E., Pawliczek R. (2001),The influence of the mean stress on fatigue life of 10HNAP steel under random loading, International Journal of Fatigue, 23, 283–291.
  • 12. Lalanne C. (2013), Mechanical Vibration and Shock Analysis, Fatigue Damage, John Wiley & Sons.
  • 13. Lutes L.D. (1996), Stochastic Analysis of Structural and Mechanical Vibrations, 1st edition, Prentice Hall, Upper Saddle River, N.J.
  • 14. Niesłony A., Böhm M. (2012), Mean Stress Value in Spectral Method for the Determination of Fatigue Life, Acta Mechanica et Automatica, 6, 71–74.
  • 15. Niesłony A., Böhm M. (2015), Mean Stress Effect Correction in Frequency-domain Methods for Fatigue Life Assessment, Procedia Engineering,12(101), 347-354.
  • 16. Pawliczek R., Kluger K. (2013) Influence of the irregularity coefficient of loading on calculated fatigue life, Journal of Theoretical and Applied Mechanics, 51(4), 791-798.
  • 17. Rice S.O. (1944), Mathematical Analysis of Random Noise, Bell SystemTechnical Journal, 23 282–332.
  • 18. Steinberg D.S. (2000), Vibration Analysis for Electronic Equipment, 3 edition, Wiley-Interscience, New York.
  • 19. Tunna J.M. (1986), Fatigue Life Prediction for Gaussian Random Loads at the Design Stage, Fatigue & Fracture of Engineering Materials & Structures, 9, 169–184.
  • 20. Wolfsteiner P., Breuer W. (2013) Fatigue assessment of vibrating rail vehicle bogie components under non-Gaussian random excitations using power spectral densities, Journal of Sound snd Vibration, 332(22), 5867-5882.
  • 21. Wolfsteiner P., Sedlmair S. (2015), Deriving Gaussian Fatigue Test Spectra from Measured non Gaussian Service Spectra, Procedia Engineering, 101, 543 – 551.
  • 22. Zhao W., Baker M. (1992), On the probability density function of rainflow stress range for stationary Gaussian processes, International Journal of Fatigue, 14 (2), 121–135.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73d29aaf-46cb-4866-9aa2-2e6551fb368d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.