PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction chemicals production wastewaters treatment. Part 1. Sludge from one-stage pretreatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oczyszczanie ścieków z produkcji chemii budowlanej. Część 1. Osady z jednostopniowego podczyszczania
Konferencja
ECOpole’17 Conference (4-7.10.2017 ; Polanica Zdrój, Poland)
Języki publikacji
EN
Abstrakty
EN
This section gives an overview of the results of the evaluation of sludge generated under conditions of full technological scale in three similar installations as a result of the use of single-stage, physicochemical pretreatment of mixed processing wastewater from the production of construction chemicals. The wastewater originated mainly from manufacturing water-based paints and silicone renders for façades of concrete structures and for interiors, adhesive mortars and glazes, protective and decorative plasters, gypsum finishing and putty coats, self-levelling compounds, as well as grouts and sealing coats. Sludge were separated due to coagulation and chemical precipitation and floatation thickening; their dewatering was conducted in filtering appliances in a form of open gravity bag filters or in a pressurized chamber filter press. For “non-anhydrous” samples of dewatered sludge obtained using PIX® based iron(III) or PAX® based aluminum coagulants, toxicity characteristic leaching procedures (TCLP) were carried out and using fractionation the risk assessment code (RAC) was determined. It was found that the sludge dewatered by gravity or pressure indicate a low risk (LR) against Cd, Cr, Cu, Ni, Mn, Pb and Zn. In accordance with the TCLP criteria, they were classified as non-toxic waste.
PL
W tej części przedstawiono wyniki oceny osadów generowanych w warunkach pełnej skali technologicznej na trzech zbliżonych konfiguracyjnie instalacjach w wyniku zastosowania jednostopniowego, fizykochemicznego podczyszczania mieszanych ścieków technologicznych z produkcji chemii budowlanej. Ścieki pochodziły głównie z linii wytwarzania wodorozcieńczalnych farb i tynków silikonowych do elewacji konstrukcji betonowych i wnętrz, zapraw klejących i glazur, tynków ochronnych oraz ozdobnych, gładzi gipsowych i szpachlowych, zapraw samopoziomujących, a także mas fugowych i powłok uszczelniających. Osady wydzielano w wyniku koagulacji i strącania chemicznego oraz flokulacyjnego zagęszczania, a ich odwadnianie prowadzono na zespołach filtracyjnych, stanowiących otwarte grawitacyjne filtry workowe, lub na ciśnieniowej, komorowej prasie filtracyjnej. Dla „niebezwodnych” prób odwodnionych osadów uzyskiwanych koagulantami żelazowymi klasy PIX® lub glinowymi klasy PAX® przeprowodzono procedury wymywalności TCLP oraz ocenę ryzyka za pomocą frakcjonowania, stosując kod RAC. Stwierdzono, że odwodnione grawitacyjnie lub ciśnieniowo osady wykazują niskie ryzyko (LR) względem Cd, Cr, Cu, Ni, Mn, Pb and Zn. Zgodnie z kryteriami TCLP, sklasyfikowano je jako odpady nietoksyczne.
Rocznik
Strony
403--414
Opis fizyczny
Bibliogr. 53 poz., tab.
Twórcy
  • Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • Faculty of Chemical Technology and Engineering, University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
Bibliografia
  • [1] Nasr FA, Doma HS, Abdel-Halim HS, El-Shafai SA. Chemical industry wastewater treatment. The Environmentalist. 2007;27(2):275-286. DOI: 10.1007/s10669-007-9004-0.
  • [2] Nasr FA, Doma HS, Abdel-Halim HS, El-Shafai SA. Chemical industry wastewater treatment. J Eng Appl Sci. 2005;52(4):697-713.
  • [3] Alvarez D, Garrido N, Sans R, Carreras I. Minimization-optimization of water use in the process of cleaning reactors and containers in a chemical industry. J Clean Prod. 2004;12(7):781-787. DOI: 10.1016/S0959-6526(03)00054-4.
  • [4] Von Rybinski W. Physical aspects of cleaning processes. In: Johansson I, Somasundaran P, editors. Handbook for Cleaning/Decontamination of Surfaces, Vol. 1. New York, USA: Elsevier; 2007. ISBN: 9780444516640.
  • [5] Ferraris CF, Obla KH, Hill R. The influence of mineral admixtures on the rheology of cement paste and concrete. Cement Concrete Res. 2001;31(2):245-255. DOI: 10.1016/S0008-8846(00)00454-3.
  • [6] Ramachandran VS. Concrete Admixtures Handbook, Properties. Science and Technology. Park Ridge, NJ: Noyes Publications; 1995. ISBN: 9780815513735.
  • [7] Ding KW, Cheng C, Hao YQ, Xia S. Calculation and analysis of the thermal performance of a new type of rock wool color steel sandwich board. Adv Mat Res. 2014;908:8-13. DOI: 10.4028/www.scientific.net/AMR.908.8.
  • [8] Burgos-Montes O, Palacios M, Rivilla P, Puertas F. Compatibility between superplasticizer admixtures and cements with mineral additions. Constr Build Mater. 2012;31:300-309. DOI: 10.1016/j.conbuildmat.2011.12.092.
  • [9] Irassar EF. Sulfate attack on cementitious materials containing limestone filler - A review. Cement Concrete Res. 2009;39(3):241-254. DOI: 10.1016/j.cemconres.2008.11.007.
  • [10] Telesca A, Marroccoli M, Calabrese D, Valenti GL, Montagnaro F. Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials. Waste Manage. 2013;33(3):628-633. DOI: 10.1016/j.wasman.2012.10.022.
  • [11] Diamanti MV, Lollini F, Pedeferri MP, Bertolini L. Mutual interactions between carbonation and titanium dioxide photoactivity in concrete. Build Environ. 2013;62:174-181. DOI: 10.1016/j.buildenv.2013.01.023.
  • [12] Katz HS, Milewski JV. Handbook of Fillers for Plastics. Springer-Verlag US; 1988. ISBN: 9780442260248.
  • [13] Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33(12):1119-1198. DOI: 10.1016/j.progpolymsci.2008.07.008.
  • [14] Mittal V. Polymer layered silicate nanocomposites: A review. Materials. 2009;2(3):92-1057. DOI: 10.3390/ma2030992.
  • [15] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mat Sci Eng R. 2000;28(1):1-63. DOI: 10.1016/S0927-796X(00)00012-7.
  • [16] Wypych G. Handbook of Fillers. 4th Ed. Toronto, Canada: ChemTec Publishing; 2016. https://www.sciencedirect.com/science/book/9781895198911.
  • [17] Paul DR, Mark JE. Fillers for polysiloxane (“silicone”) elastomers. Prog Polym Sci. 2010;35(7):893-901. DOI: 10.1016/j.progpolymsci.2010.03.004.
  • [18] Zhu W, Gibbs JC. Use of different limestone and chalk powders in self-compacting concrete. Cement Concrete Res. 2005;35(8):1457-1462. DOI: 10.1016/j.cemconres.2004.07.001.
  • [19] Wang X, Shui Z, Yu R, Bao M, Wang G. Effect of coral filler on the hydration and properties of calcium sulfoaluminate cement based materials. Constr Build Mater. 2017;150:459-466. DOI: 10.1016/j.conbuildmat.2017.05.194.
  • [20] Ahmed NM, Selim MM. Innovative titanium dioxide-kaolin mixed pigments performance in anticorrosive paints. Pigm Resin Technol. 2011;40(1):4-16. DOI: 10.1108/03699421111095883.
  • [21] Voitovich VA. Cement-polyvinyl-acetate adhesives: An alternative to dry mortar. Polym Sci D. 2009;2(2):88-91. DOI: 10.1134/S1995421209020051.
  • [22] Lin CL, Tsai MC. The effect of different calcium compound additives on the distribution of bottom ash heavy metals in the processes of agglomeration and defluidization. Fuel Process Technol. 2012;98:14-22. DOI: 10.1016/j.fuproc.2012.01.021.
  • [23] Silva I, Castro-Gomes JP, Albuquerque A. Effect of immersion in water partially alkali-activated materials obtained of tungsten mine waste mud. Constr Build Mater. 2012;35:117-124. DOI: 10.1016/j.conbuildmat.2012.02.069.
  • [24] Shi C, Qian J. High performance cementing materials from industrial slags - A review. Resources Conserv Recycl. 2000;29(3):195-207. DOI: 10.1016/S0921-3449(99)00060-9.
  • [25] Wang N, He L, Egel E, Simon S, Rong B. Complementary analytical methods in identifying gilding and painting techniques of ancient clay-based polychromic sculptures. Microchem J. 2014;114:125-140. DOI: 10.1016/j.microc.2013.12.011.
  • [26] Giustetto R, Gonella D, Bianciotto V, Lumini E, Voyron S, Costa E, et al. Transfiguring biodegradation of frescoes in the Beta Vergine del Pilone Sanctuary (Italy): Microbial analysis and minero-chemical aspects. Int Biodeter Biodegr. 2015;98:6-18. DOI: 10.1016/j.ibiod.2014.10.020.
  • [27] Al-Ahmady KK. Effect of organic loading on rotating biological contactor efficiency. Int J Environ Res Pub Health. 2005;2(3-4):469-477. DOI: 10.3390/ijerph2005030012.
  • [28] http://www.projprzemeko.pl/realizacje/oczyszczanie-sciekow-przemyslowych.html.
  • [29] PN-EN ISO 10523:2012. Water quality - Determination of pH. http://sklep.pkn.pl/pn-en-iso-10523-2012e.html.
  • [30] PN-EN 872:2007. Water quality - Determination of suspended solids - Method by filtration through glass fibre filters. http://sklep.pkn.pl/pn-en-872-2007p.html.
  • [31] PN-ISO 15705:2005. Water quality - Determination of the chemical oxygen demand index (ST-COD) - Small-scale sealed-tube method. https://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2015705:2002&gclid=Cj0KCQiAwKvTBRC2ARIsAL0Dgk2jF6M6tJb8RaZwYrYLizIpvVJusXfsRTx6TE0CHL5heM6oEpLskjkaAixlEALw_wcB.
  • [32] PN-EN 1899-1:2002. Water quality - Determination of biochemical oxygen demand after n days (BOD) - Part 1: Dilution and vaccination method with the addition of allyl thiourea. http://sklep.pkn.pl/pn-en-1899-1-2002p.html.
  • [33] CSN EN 16168. Sludge, treated biowaste and soil - Determination of total nitrogen using dry combustion method. https://www.en-standard.eu/csn-en-16168-sludge-treated-biowaste-and-soil-determination-of-totalnitrogen-using-dry-combustion-method/?gclid=Cj0KCQi.
  • [34] PN-EN ISO 6878:2006. Water quality - Determination of phosphorus - Ammonium molybdate spectrometric method (ISO 6878:2004). https://www.en-standard.eu/din-en-iso-6878-water-quality-determination-ofphosphorus-ammonium-molybdate-spectrometric-method-iso-6878-2004/?gclid=Cj0KCQiAwKvTBRC2ARIsAL0Dgk15ROa9aFrrPzvYyYddXA3e9aG8CBYjxVWLSTfdUrlZJretN4RN9xYaAuyZEALw_wcB.
  • [35] http://www.kemipol.com.pl/products.
  • [36] Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844-851. DOI: 10.1021/ac50043a017.
  • [37] US EPA. Test methods for evaluating solid waste. Physical/chemical methods. Method 1311. Toxicity characteristic leaching procedure (TCLP), EPA Publ. SW-846. 3rd ed. Vol. 1A. Office of Solid Waste and Emergency Response, US EPA, Washington, DC, 1992. https://www.epa.gov/hw-sw846/sw-846-testmethod-1311-toxicity-characteristic-leaching-procedure.
  • [38] PN-EN ISO 11885:2009E. Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (ISO 11885:2007). https://pzn.pkn.pl/kt/info/published/9000128836.
  • [39] Rauckyte-Żak T. Comparison of the sequential extraction methods for soil subjected to the long-term effect of sewage. Proc ECOpole. 2015;9(2):489-497. DOI: 10.2429/proc.2015.9(2)057.
  • [40] Rauckyte-Żak T. Assessment of sludges from rail freight car wash wastewaters. The primary sludges. Proc ECOpole. 2017;11(1):77-86. DOI: 10.2429/proc.2017.11(1)008.
  • [41] Rauckyte-Żak T, Żak S. Wastewaters treatment from rail freight car wash. Assessment of physicochemical treated sludges. Proc ECOpole. 2017;11(1):87-96. DOI: 10.2429/proc.2017.11(1)009.
  • [42] Żak S, Rauckyte-Żak T, Laurinavičius A. The influence of treated oleo-chemical wastewater applications on the metal speciation forms in soils. J Environ Eng Landsc. 2013;21(2):85-95. DOI: 10.3846/16486897.2013.773259.
  • [43] Akitt JW, Greenwood NN, Khandelwal BL, Lester GD. 27Al nuclear magnetic resonance studies of the hydrolysis and polymerisation of the hexa-aquo-aluminium(III) cation. J Chem Soc Dalton Trans. 1972;5:604-610. DOI: 10.1039/DT9720000604.
  • [44] Bottero JY, Tchoubar D, Cases JM, Fiessinger F. Investigation of the hydrolysis of aqueous solutions of aluminum chloride. 2. Nature and structure by small-angle x-ray scattering. J Phys Chem. 1962;86(18):3667-3673. DOI: 10.1021/j100215a034.
  • [45] Matijevic E, Mathai KG, Ottewill RH, Kerker M. Detection of metal ion hydrolysis by coagulation. III. Aluminum. J Phys Chem. 1961;65(5):826-830. DOI: 10.1021/j100823a028.
  • [46] Amirtharajan A, Mills KM. Rapid-mix design for mechanisms of alum coagulation. J Am Water Works Assoc. 1982;74(4):210-216. http://www.jstor.org/stable/41271001.
  • [47] Santos A, Alonso E, Callejón M, Jiménez JC. Heavy metal content and speciation in groundwater of the Guadiamar river basin. Chemosphere. 2002;48(3):279-285. DOI: 10.1016/S0045-6535(02)00083-8.
  • [48] Tonietto AE, Grassi MT. Speciation analysis of copper and zinc using differential pulse anodic stripping voltammetry. Quim Nov. 2012;35(1):170-174. DOI: 10.1590/S0100-40422012000100029.
  • [49] Tonietto AE, Lombardi AT, Choueri RB, Vieira AAH. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity. Environ Sci Pollut Res. 2015;22(20):15920-15930. DOI: 10.1007/s11356-015-4773-3.
  • [50] Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanetta ML. Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In: Lakkas TD, editor. Heavy Metals in the Environment, vol. 2. Edinburg: CEP Consultants; 1985.
  • [51] Sundaray SK, Nayak BB, Lin S, Bhatta D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments - a case study: Mahanadi basin, India. J Hazard Mater. 2011;186(2-3):1837-1846. DOI: 10.1016/j.jhazmat.2010.12.081.
  • [52] Liang G, Zhang B, Lin M, Wu S, Hou H, Zhang J, et al. Evaluation of heavy metal mobilization in creek sediment: Influence of RAC values and ambient environmental factors. Sci Total Environ. 2017;607-608:1339-1347. DOI: 10.1016/j.scitotenv.2017.06.238.
  • [53] Canuto FAB, Garcia CAB, Alves JPH, Passos EA. Mobility and ecological risk assessment of trace metals in polluted estuarine sediments using a sequential extraction scheme. Environ Monit Assess. 2013;185:6173-6185. DOI: 10.1007/s10661-012-3015-0.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73cb8564-820f-4e39-9575-6eca17d9dcde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.